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Syllabus

Instructor: Dr. Andrew Blechman (MP 1102, x8-5215, blechman@physics); supervised by
Prof. Michael Luke (luke@physics).

Length: 4 weeks, two 1.5 hr lectures each week.

Proposed Time: Alternate weeks, Monday/Wednesday, 3PM - 5 PM in MP 1115.

Prerequisites: QFT I and II or equivalent, or permission of instructor.

Course Goals: There is a gap of knowledge between the QFT courses students take when
they start graduate work in theoretical physics, and actual research. This gap is
traditionally filled by hard work and hands-on experience. I would like to offer a
short course to help students fill that gap. I will try to cover the basics of three
vitally important techniques used in modern theoretical physics research: spontaneous
symmetry breaking, effective field theory and the renormalization group. Materials will
be covered in both lecture format, as well as through challenging homework problems.

Evaluations: Students will complete one assignment each week for a total of 4 assignments.
Each set will contain several problems. All problems will be weighted equally and will
be graded with the following scheme:

1. 0 points: did not attempt.

2. 1 point: did not put any effort into trying to get the answer.

3. 2 points: made an honest effort; almost got the answer.

4. 3 points: did the problem completely right.

The sum of all points earned will be the final raw grade. Allowances will be made for
participation in and out of class. Students are strongly encouraged to work together
on the assignments, as they will (hopefully) be challenging.
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Chapter 1

Group Theory: The Language of
Model Building

When trying to understand the physics involved in a problem, the first step is to identify

the relevant degrees of freedom and any symmetries that relate them. Once you have done

that, you will be in a position to think about how these degrees of freedom are allowed to

interact with each other. In this lecture, we will consider how to identify these symmetries,

and how to codify them. The mathematics that are used to accomplish this comes from

group theory. This is not a group theory class, and I do not want to go deeply into the rich

and fascinating structure of the theory of groups, but there are some things that we have to

understand. After a brief review of the basics, we will discuss the nature of representation

theory of Lie groups, which is the chief tool to codify symmetries in field theory.

There is some information in my math primer [1], but the relevant information will be

self contained in these lectures. Feel free to use both. In addition, there are the texts by

Georgi [2] and Cahn [3], the latter is available for free online.

1.1 The Basics

We will begin by displaying a bunch of useful definitions and theorems about group theory

in general.

Definition 1 A group G is a set and an operation (usually called “multiplication”) such

that four axioms hold:

CLOSURE: If a, b ∈ G, then ab ∈ G.
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ASSOCIATIVE: ∀a, b, c ∈ G, (ab)c = a(bc).

IDENTITY: There exists a unique element e ∈ G such that ∀a ∈ G, ae = ea = a.

INVERSES: ∀a ∈ G, there exists a unique element, denoted a−1, such that

aa−1 = a−1a = e.

COMMUTIVITY: If ∀a, b ∈ G: ab = ba, then the group is called an abelian group;

otherwise it is called nonabelian.

Definition 2 H ⊂ G is a subgroup of G if it is a subset that satisfies the above axioms

of a group. Actually, it need only satisfy the closure and inverses axioms – the others follow

automatically.

Definition 3 If G,G′ are groups and φ : G → G′ is a map that preserves multiplication:

φ(ab) = φ(a)φ(b) ∀a, b ∈ G, then φ is called a homomorphism:

• If φ is one to one, it is a monomorphism.

• If φ is onto, it is an epimorphism.

• If φ is bijective, it is an isomorphism.

• If φ is an isomorphism of G into itself, it is an automorphism.

Notice that isomorphisms are equivalence relations. We will denote isomorphic groups as

G ∼= H .

Definition 4 If φ : G→ G′ is a group homomorphism, then the set

Ker φ ≡ {g ∈ G|φ(g) = e′} , (1.1)

is called the kernal of φ. It is easy to prove that it is a subgroup of G for any group

homomorphism.

Theorem 1 φ is an isomorphism if and only if Ker φ is trivial. That is: it is the group of

a single element (the identity).
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Definition 5 Let H ⊂ G be a subgroup. The set

G/H ≡ {gh|g ∈ G, h ∈ H} , (1.2)

called “G mod H” is the set of left cosets of H in G. An element of this set is

gH = [g] = {gh|h ∈ H} . (1.3)

One can also define right cosets similarly (denoted Hg).

Definition 6 H ⊂ G subset is called a normal or invariant subgroup if and only if

gH = Hg ∀g ∈ G. Equivalently:

∀g ∈ G, h ∈ H : ghg−1 ∈ H . (1.4)

Normal subgroups are denoted H ⊳G.

Notice that ghg−1 need not equal h – as long as the product remains in H , that is enough.

Theorem 2 All abelian subgroups are normal subgroups. Proof is trivial!

Normal subgroups are very important in group theory and in physics. Here are three

vitally important theorems about them that explain why this is so.

Theorem 3 If H ⊳G then G/H is a subgroup of G, called a factor group. The converse

is also true.

Theorem 4 If H ⊳ G, then there exists a homomorphism φ such that H ≡ Ker φ. Thus,

one can think of “G/H” as “collapsing” the subgroup H to the identity.

Theorem 5 If H ⊳G, then G ∼= (G/H)×H. Similarly, if G ∼= G1 ×G2, then G1, G2 ⊳G.

Thus if H ⊳G, then so is G/H ⊳G.

Definition 7 If G has no normal subgroups, it is called a simple group. Notice that this

does not mean that it has no general subgroups.
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While discrete group theory is an awesomely beautiful subject in its own right, and

dramatically useful in so many areas of physics, we just do not have the time here to talk

about them. Instead, we will be more interested in the theory of “continuous groups.” These

are, roughly speaking, groups with elements that differ continuously from one another. That

is: all group elements can be written as g(~θ) for some set of quantities ~θ, where g is a

continuous function in these parameters.

Definition 8 Let G = {g(~θ)} be a continuous group.

1. If the vector of parameters ~θ is a finite n dimensional vector, then G is called a finite

group of dimension n. We will sometimes denote n as dim(G).

2. If each θi only assumes values over a compact space (e.g.: a closed and bounded interval)

then G is called a compact group.

From the above definition of a continuous group, it follows that if ~θ1, ~θ2 are continuous

parameters that describe the group elements g(~θ1), g(~θ2), then by the closure axiom:

g(~θ1) · g(~θ2) = g[F (~θ1, ~θ2)],

where F is itself continuous.

Definition 9 If F (~θ1, ~θ2) described above is analytic1 as well as continuous, then the group

is called a Lie Group.

Because of this additional condition, we can consider “small” parameters are rely on the

first few terms of the expansion:

g(~θ) = 1 + iT aθa + O(θ2)

where we have normalized g(0) = e (the identity, represented by the number 1) and iT a are

the linear coefficients of the expansion, called the group generators for reasons that will

become apparent shortly.

1Recall that in real analysis: a function is analytic at x if it has a converging Taylor expansion at x.
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Aside: What we actually have here is that a Lie group is a group that is also a
differentiable manifold. It would take us too far afield to discuss all the rich and
fascinating implications of this statement, but one very useful consequence of this
is that there exists a very useful and special choice of coordinates on the Lie group
manifold called normal coordinates, defined by an object called the exponential
map. Consequently, we can parametrize all of the group elements as

g(~θ) = eiθaT a

.

In this notation, it is also clear that g(~θ)−1 = e−iθaT a

. The proof of the existence of
this parametrization making sense is a standard exercise in the theory of differential
manifolds. This is not the place for that, but I strongly encourage you to look it
up on your own.

It turns out that the structure of the group can be completely determined by working

out the structure of the linear coefficients T a, up to some topological questions that are not

important at this stage. To see how, consider the group commutator:

[g(~θ1), g(~θ2)] ≡ g(~θ1) · g(~θ2) · g(~θ1)−1 · g(~θ2)−1 = g(~θ3) , (1.5)

where the last equality follows from closure of the group. Expanding the group elements for

small ~θi, we get:

g(~θ3) = 1 + iT aθa
3 + O(θ2

3) = 1 + θa
1θ

b
2[T

a, T b] + · · · (1.6)

where we have kept the lowest nontrivial term on each side and introduced the notation

everyone knows: [T a, T b] ≡ T aT b−T bT a. This means that we need θ3 ∼ θ1θ2 to be consistent,

and therefore θ2
3 ∼ θ4, so it is safe to truncate the series as we did. Comparing both sides

we find:

[T a, T b] = ifabcT c (1.7)

for some O(1) coefficients fabc. These are called the structure constants and they uniquely

determine the group, at least locally.

What we have actually found is that the Lie group is determined by a Lie Algebra:

Definition 10 An algebra is a vector space with a product.

For the Lie Algebra case, this product is given by the commutator [T a, T b], where the T a

form a basis for the algebra.
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You all know examples of commutative algebras: R and C. The example of a noncom-

mutative algebra everyone knows is R
3 with the product of two vectors being the ordinary

cross product. This is an example of a Lie algbra, in fact, with fabc = ǫabc; this algebra is

called A1 for the experts.

Aside: It is an amusing fact that there are only so many algebras you can ac-
tually write down up to isomorphism. For a simple example, consider the finite
dimensional division algebrasa A that preserve norms:

|x · y| = |x||y| ∀x, y ∈ A.

It turns out that there are only four such algebras: R,C,H and O. The first two
I already mentioned, and are the only abelian algebras with this property. The
third is called the quaternions and the last are the octonians, which are not even
associative.
It is not a coincidence that there are only a finite number of “families” of Lie
algebras as well, and that they are all related to the four algebras listed here, as we
will see in the next aside.

aA division algebra is one for which there is an inverse to multiplication.

The generators T a can always be represented by matrices, and we can use this to define an

inner product on the Lie algebra by using the Trace operation. There is a certain arbitrariness

to this. Let us define:

Tr{T aT b} = Tδab. (1.8)

T can be any number, and it also depends on how we chose to represent our generators with

matrices. However, once we chose it for one particular representation, its value is fixed for

all representations, as we will see below. This number is called the Dynkin index.

In general (as should be obvious by now) the Lie algebra is not commutative, otherwise

it would be a pretty boring subject! However, there are some structure constants that do

vanish, and this leads us to the following important definition:

Definition 11 Let CG ≡ {T a|[T a, T b] = 0} – that is, this is the set of generators that

mutually commute with each other. These are called the Cartan generators of the algebra.

It is not hard to show that they generate a subalgebra, called the Cartan subalgebra. The

dimension of this subalgebra is called the rank of G.
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Aside: As alluded to in the previous aside, there are only a finite number of “fam-
ilies” of Lie algebras of a particular type. In particular: for any given rank n, there
are only four (or sometimes five) simple, compact Lie algebras. They fall into four
families: An, Bn, Cn, Dn, as well as five “exceptional” algebras:

• An generate SU(n + 1).

• Bn generate SO(2n+ 1).

• Cn generate Sp(2n) [sometimes just called Sp(n) – be careful to know which
convention is being used.]

• Dn generate SO(2n) for n ≥ 2.

• G2, F4, E6, E7 and E8 are the “exceptional” Lie algebras.

In addition, there are isometries between some of the algebras and the groups they
generate:

A1 = B1 = C1 −→ SU(2) ∼= SO(3) ∼= Sp(2)

D2 = A1 ×A1 −→ SO(4) ∼= SU(2) × SU(2)

B2 = C2 −→ SO(5) ∼= Sp(4)

A3 = D3 −→ SU(4) ∼= SO(6)

The group congruences are up to global issues. All other simple, compact Lie
algebras/groups are unique.
It is not a coincidence that there are four families of Lie algebras plus exceptionals,
and that there are four norm preserving division algebras! In fact, SU(N) describes
linear transformations that leave the length of an N vector in C invariant; SO(N)
describes linear transformations that leave the length of an N vector in R invariant;
Sp(N) describes linear transformation that leave the length of an N vector in H

invariant; and the exceptionals describe linear transformations that act on vectors
in O – the fact that they’re so strange is related to the fact that O is nonassociative.

1.2 Representation Theory of Lie Groups

Group theory is all well and good, a cute exercise in abstract mathematics. The million dollar

question is: how do we use this information to organize a physical calculation? Tackling this

question will be the subject of the rest of this lecture, and in some sense, possibly the rest

of your research career!

Here we generally denote ΓN ≡ {D(g)|g ∈ G}; D(g) is an N ×N matrix.

Definition 12 A homomorphic map of a group G to the group of N×N matrices with matrix
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multiplication ΓN is called a matrix representation of G. N is called the dimension of

the representation.

• If this representation map is monomorphic, ΓN is called a faithful representation.

• If D(g) is a unitary matrix ∀g ∈ G, ΓN is called a unitary representation.

Examples:

1. D(g) = 1 ∀g ∈ G is the trivial representation. It is not faithful, but is still very

important.

2. [T a]bc ≡ −ifabc is called the adjoint or regular representation. It is a faithful

representation. It is also clear that dim(Adj) = dim(G).

3. Consider the Lie group (algebra) SU(N) and construct the N dimensional representa-

tion. It is a theorem that this is the smallest faithful representation you can construct.

It is called the fundamental defining representation.

The defining representation is not unique. In fact:

Theorem 6 For a group of rank n, there are n defining representations.

Definition 13 Let ΓN be the N dimensional representation of G. Then the set

ΓN ≡ {[D(g)]∗|g ∈ G, D(g) ∈ ΓN} ,

is called the conjugate representation of ΓN . If ΓN = ΓN , then ΓN is called a real

representation.

There is an ambiguity about which of ΓN ,ΓN should be called the “conjugate” represen-

tation, since clearly ΓN = ΓN . We will fix this ambiguity shortly.

Now we are going to make a vital definition.

Definition 14 A group action on a set S is a map G× S → S, generally written ĝs with

g ∈ G, s ∈ S such that the following axioms hold:
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IDENTITY: ês = s ∀s ∈ S;

ASSOCIATIVE: (ĝ1ĝ2)s = ĝ1(ĝ2s).

The power of all this machinery of Lie algebras is that we can use it to define a Lie group

action on a vector space whose dimension is the dimension of the representation. So if ΓN is

the N dimensional representation of G, then an N vector xa (a = 1, . . . n) can transform

as

xa → [D(g)]a.bx
b.

where Einstein notation is assumed. Note the placement of indices. Similarly, we have under

the conjugate representation ΓN

ya → [D(g)∗].ba yb.

Keeping track of covariant and contravariant indices helps keep track of conjugate represen-

tations and prevents you from making mistakes, just like in GR.

Definition 15 A representation is reducible if every matrix can be written as a block-

diagonal matrix2. We can write ΓN = ΓN1
⊕ ΓN1

⊕ · · · ⊕ ΓNp, where
∑p

k=1Nk = N . If a

representation cannot be so decomposed, it is called irreducible.

It is clear that if you know of all of the irreducible representations of a group, then you are

in good shape, since any reducible representation can always be decomposed into a Kroneker

sum of irreducible representations.

We can also consider the product of representations:

ΓN1
⊗ ΓN2

≡ {[D1(g)]ab[D2(g)]cd|∀g ∈ G}.

Such objects are generally reducible, and we would like to understand how to decompose

products like this into irreducible representations:

ΓN1
⊗ ΓN2

= ΓN1
⊕ ΓN1

⊕ · · · ⊕ ΓNp where

p
∑

k=1

Nk = N1 ·N2.

2Technically, this is a stronger condition called completely reducible; but for everything we will be
doing, all reducible representations are completely reducible, so I will not distinguish in the future.
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Theorem 7 For a vector in an (irreducible) representation, the elements of the vector are

described by the n eigenvalues of the Cartan generators.

This is just a generalization of the spin algebra from quantum mechanics. SU(2) (= A1)

is a rank 1 algebra, and inside a given representation, the elements are indexed by the

eigenvalues of the one Cartan generator (J3). These eigenvalues are called weights. This

suggests a very powerful tool for constructing representations: Let {~e1, · · · , ~en} be a set of

orthonormal vectors (n =rank(G)) that transform in the different defining representations:

• ~e1 is the fundamental representation (Γ1).

• ~en−i+1 transforms in the conjugate representation of ~ei.

This set of vectors provide a basis for any quantity that transforms under any representation

of the Lie group, generally called a tensor operator:

Ô = Oa1···ai;b1···bj ;···(e
a1

1 · · · eai

1 )(eb1
2 · · · ebj

2 ) · · · (1.9)

where all indices of a given letter are symmetrized and all conjugate indices are trace free.

All tensor operators are products of copies of the defining representations:

g : Oa1··· ;b1··· ;··· → [D1(g)]a1ā1
· · · [D2(g)]b1b̄1 · · ·Oā1··· ;b̄1··· ;··· (1.10)

In particular, an operator that transforms under an irreducible representation of G is de-

scribed completely as an operator with i indices of type 1, j indices of type 2, etc.

In summary: Irreducible representations of a Lie group of rank n are described

by n positive integers.

Examples:

1. SU(2) – This is a rank 1 group, so irreducible representations are defined by a single

integer:

• (1) : ξa

• (4) : ξabcd

2. SU(3) – Rank 2, so it is described by two integers:
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• (0, 0) : Trivial rep

• (1, 0) : Fundamental (ξa)

• (0, 1) : Antifundamental (ξa)

• (1, 1) : Adjoint (ξa
b )

3. SU(4) – Rank 3, needing three integers:

• (0, 0, 0) : Trivial

• (1, 0, 0) : Fundamental (ξa)

• (0, 0, 1) : Antifundamental (ξa)

• (1, 0, 1) : Adjoint (ξa
b )

• (0, 1, 0) : A new defining representation with one index3 (ξâ).

From these examples, we can see a few patterns:

1. (0, · · · , 0) is always the trivial representation.

2. (1, 0, · · · , 0) is the fundamental representation.

3. (1, 0, · · · , 0, 1) is the adjoint representation.

4. (a, b, · · · , c) = (c, · · · , b, a).

From this last point, we see that the adjoints are always real representations. So is (0, 1, 0)

in SU(4).

Unfortunately, (a, b, · · · , c)⊗ (a′, b′, · · · , c′) and (a, b, · · · , c)⊕ (a′, b′, · · · , c′) are not easily

visualized in this notation. Fortunately, there is a very powerful and useful notation for

keeping track of representations, and also for computing representations in products. This

is the technology of Young tableaux.

3There is no single accepted notation for these kinds of indices that I am aware of, so I put a hat over
it. As we will see below, it is a real represntation so it does not matter if you put it upper or lower, but in
general it would.
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1.3 Young Tableaux for SU(N)

Every group has a pictorial mnemonic for keeping track of representations through a series

of boxes lined up in a given way. These collections of boxes are called Young Tableaux,

named after an accountant who developed them as a means of keeping track of permutations

(they were originally designed for the discrete group Sn). We, however, will exclusively use

them for describing representations of the SU(N) groups. But they can also be used for any

other group with only slight modification of the rules.

Consider SU(n+1), which recall has rank n. An irreducible representation of this group

is described by n integers.

For each (1, 0, · · · , 0) : assign a .

For each (0, 1, · · · , 0) : assign a .

...
...

where the mth integer is represented by a column of m boxes. We already pointed out that

any representation can be constructed by a symmetrized product of defining representations.

This is realized through Young tableaux by juxtaposing columns into a single large tableau,

with the convention that all Young tableaux are top-left justified.

Examples:

1. (4) in SU(2) :

2. (3, 2) in SU(3):

3. (1, 2, 3) in SU(4):

4. Adjoint [(1, 0, · · · , 0, 1)] in SU(N): N − 1
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1.3.1 Computing dimensions of SU(N) reps with Young tableaux

Young tableaux are wonderous devices – not only are they a powerful mnemonic for keeping

track of representations, but they allow you to compute the dimensions of the representations

almost without effort! Again, we will be considering SU(N), but the rules can be altered

easily enough to cover any group. But for the sake of this lecture, let us consider an arbitrary

Young tableau describing a representation of SU(N). To compute the dimension, there are

two steps:

1. In the top left box, put an N . Going down the column, label the boxes counting down.

Going across the rows left to right, count up. Take the product of all of these numbers.

Call it F .

2. Starting on the right side of the tableau, draw all the “hooks” that you can – these

are lines that go right to left, and make a single, hard turn south and continue down.

Count the number of boxes each hook passes through, and take the product of all of

these numbers. Call it H .

Theorem 8 dim(Y.T.) =
F

H

Examples:

1. (4) in SU(2) : 2 3 4 5 dim = 2·3·4·5
1·2·3·4

= 5.

2. (3, 2) in SU(3):

3 4 5 6 7
2 3 dim = 3·4·5·6·7·2·3

1·2·3·5·6·1·2
= 42.

3. (0, 1, 0) in SU(4):

4
3 dim = 4·3

2·1
= 6.

4. Adjoint [(1, 0, · · · , 0, 1)] in SU(N): N−1







N
...
2

dim = (N+1)!
N ·(N−2)!

= N2−1.

A word on notation: often a representation is described by its dimension. For example,

in SU(3), the (1, 0) is sometimes called the 3 while the (0, 1) is called the 3̄; in SU(4),

the (0, 1, 0), which is a real representation, is called the 6 = 6̄. This is a very common

notation, but unfortunately it can be a little confusing, since there could be more than one
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representation with the same dimension. So you must be careful to know what convention

the author is using when you see such a labeling of dimensions. The tradition is to use the

conventions of [4].

From the above examples, it is also clear that to turn a representation to the conjugate

representation, all you need to do replace each column of x boxes with a column of N − x

boxes, since that corresponds to reflecting the integers in the weight vector. To decide

whether a rep should be barred or not, we use the rule: If the largest integer is to the left

(least number of long columns in the Young tableau), the representation is not barred. So for

example, in SU(3):

42 = (3, 2) = ⇔ 42 = (2, 3) =

1.3.2 Decomposing Products of Irreducible Representations of SU(N)
with Young Tableaux

We are finally in a position to understand how to decompose products of representations in

terms of a direct sum of irreducible representations. Again, Young tableaux make the whole

process deliciously simple!

As a first step, take a moment to notice a few facts about columns in a typical Young

tableau in SU(N):

1. dim



















N boxes = 1, so this is a singlet.

2.



















N + 1 boxes does not exist.

This means that when we construct Young tableaux and end up with N boxes in a column,

we can drop the whole column (since it is just 1) and we never can construct a Young tableau
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wiht more than N boxes in a column. For example, in SU(3):

=

It is sufficient to consider the product of two irreducible representations, since more

general products can be built up by associativity of the Kroneker product. Also note that

this product is commutative, so we can arrange the Young tableaux in any order that we

wish. This will be useful in general. Now, to proceed:

To compute Γ1 ⊗ Γ2:

1. Chose the Young tableau with the least number of boxes (without loss of generality

since the Kroneker product is commutative, let it be Γ2) and place an “a” in every box

in the first row, a “b” in every box in the second row, etc.

2. Start adjoining “a” boxes onto Γ1’s tableau to the right and below, being careful to

maintain the justification rules, and with no more than one “a” in each column.

This last rule is there to avoid both symmetrizing and antisymmetrizing in the same

index (which would give zero).

3. Now do the same thing with the “b” boxes with one additional rule: the number of

as above and to the right of the first b must be greater than or equal to the

total number of bs. This rule is there to avoid double counting.

4. Repeat wtih c, d, . . . with Step 3 being generalized accordingly.

5. Now go through the list of tableaux, killing off any vanishing diagrams or singlet

columns as mentioned above. What is left is your answer!

Examples: SU(2) is a little too trivial, so let us consider SU(3):

⊗ a = a ⊕
a

⇒ 3 ⊗ 3 = 6 ⊕ 3

⊗ a
b

=
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a −→ a b ⊕ a
b

⊕
a

b

a
−→ b

a
⊕ a

b

a
−→

b

a
⊕ b

a
⊕

a
b

The first diagram in each row violates the rule about as before bs, as does the second diagram

in the third row. The last diagram in this chain has four boxes in a column, and since this

is SU(3) this diagram vanishes. Finally, the last diagram in the first two rows have singlet

columns that we can cross out. So our final result is:

⊗ = ⊕ ⊕

(1, 1) ⊗ (0, 1) = (1, 2) ⊕ (2, 0) ⊕ (0, 1)

8 ⊗ 3̄ = 15 ⊕ 6 ⊕ 3̄

where I have included three ways to denote the results. Notice: = , where

dim = 3·4·5·2
4·2

= 15. But the 15 we have has more long columns – therefore it is the conjugate

representation.

1.4 Group Theory Coefficients

There are some very general relationships among products of generators of Lie groups that

appear when performing calculations. Through the orthonormality condition, we can write

very general rules for what these products are. In particular, there are three quantities of

practical interest:

Dynkin Index: We’ve seen this one already:

Tr[T a
RT

b
R] = T (R)δab (1.11)

If we specify T (F ) in the fundamental representation , then the Dynkin index is

unique and a function of the representation. It is standard to use T (F ) = 1
2
, although

16



T (F ) = 1 is also sometimes used. Be careful to know what the convention is, or you

will make terrible mistakes!

Quadratic Casimir: This is analogous to the J2 operator in quantum mechanics:

T a
RT

a
R = C2(R)1R (1.12)

where there is the usual sum over a and 1R is the dimR × dimR unit matrix. Fixing

κF above means that C2(R) is also unique and a function of R.

Anomaly Coefficient: The totally symmetric product of three generators appears often,

as we will see. From closure of the algebra, we can define the totally symmetic three-

index symbol in the fundamental representation of SU(N):

[T b
F , T

c
F ]+ =

1

N
δab + dabcT c

F . (1.13)

These objects are not fundamental: they can be computed in terms of the structure

constants – but they are a useful shortcut. Using this tool we can compute for the

totally symmetric product of three generators in any representation:

Tr{T a
R[T b

R, T
c
R]+} = A(R)T (F )dabc (1.14)

The A(R) are called anomaly coefficients and can be computed or looked up in a table.

Notice that they are normalized so that A(F ) = 1. Also notice that the existence

of a nontrivial dabc is only true for SU(N) groups for N ≥ 3, so that these can only

exist for such groups. In particular, Sp(N) and SO(N) (except SO(6)) do not have

nonvanishing anomaly coefficients, nor does SU(2). This is a very important fact that

will come up again later.

The Dynkin index, quadratic Casimir and anomaly coefficient can all be looked up in

tables for any irreducible representation of SU(N), and of the other groups as well. We also

have a very useful formula relating the Casimir and Dynkin index:

C2(R) =

(

dimG

dimR

)

T (R) . (1.15)

It is also clear from the rules of the Trace operation that:
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1. T (R1 ⊕ R2) = T (R1) + T (R2),

2. T (R1 ⊗ R2) = (dimR1)T (R2) + (dimR2)T (R1).

The anomaly coefficients have similar rules, with the extra useful rule that:

A(R) = −A(R) . (1.16)

In particular, this means that an object that transforms in a real representation (either an

irreducible real representation like the Adjoint representation or a vector-like representation

R ⊕ R) automatically has a vanishing anomaly coefficient. This will be very important in

the future. This is also another way to see that SO(N) and Sp(N) algebras cannot have

nonvanishing anomaly coefficients, since they only admit real representations.
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Chapter 2

Speaking the Language: How to Build
Models

All throughout the first lecture, we have implicitly been assuming that our symmetry group

was linearly realized – that is, our group elements took the form of linear transformations

(matrices with constant entries) acting on some vectors. However, there is no physical reason

to assume this, and in fact, as we will see in this lecture, there are plenty of physical reasons

to abandon it! To this end, we would now like to take the next step and analyze nonlinear

realizations of a symmetry group.

The reason why nonlinear realizations of a symmetry group are so useful is that it turns

out to be the most effective way to represent a symmetry that has been spontaneously broken.

This, as we will see, is a most unfortunate name, as a “spontaneously broken symmetry”

is not actually broken! This leads many students to confusion, and so I would like to take

some time to study how spontaneously broken symmetries can be realized nonlinearly in an

action.

The technology to do this was first worked out in [5, 6]. These papers, published back

to back in the Physical Review, are required study material for any student serious about

learning quantum field theory, but be warned: they are particularly difficult papers to get

through. I recommend you read them very carefully and think hard about what they’re

trying to say. I will summarize the ideas they present, avoiding proofs where I think I can

get away with it. But you should go and work these things out yourselves so that you are

sure to understand them. This technology is, in many ways, the core to all effective field

theories.
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I am not going to spend any time discussing the ideas of spontaneous symmetry breaking

and its relationship to Noether’s Theorem. I am assuming that this is already known. For

a review, see your favorite textbook, such as [7].

2.1 Nonlinear Realizations of Symmetries

Consider a group G, and a subgroup H ⊂ G. A nonlinear realization on G is a represen-

tation of the direct product H ⊗ (G/H). If H ⊳G, then G/H is a group and this statement

is nearly vacuous. However, if H is not normal, as is the case whenever G is a simple group

for example, then G/H is not a group! It is merely the set of left cosets of H (see Section

1.1).

In particular: If V a are the generators of H and Aa are the remaining generators of G,

then we can chose a representation of the group to take the form:

g(ξ, u) = eiξ·Aeiu·V (2.1)

where eiu·V ∈ H and eiξ·A ∈ G/H . Notice again that in general, the set of all eiξ·A does not

form a group. For a general g ∈ G, we have from closure of G that

geiξ·A = eiξ′·Aeiu′·V , (2.2)

where ξ′ = ξ′(ξ, g) and u′ = u′(ξ, g) are analytic functions due the Lie group structure.

Now back to physics. Suppose we have a theory containing several fields ψ with an action

that is invariant under the whole group G. Let us chose to realize this symmetry by having

all these fields in a linear representation of H :

h : ψ −→ ψ′ ≡ D(h)ψ . (2.3)

Then observe the action of G on the object ψ̂ ≡ eiξ·Aψ, using associativity:

g(eiξ·Aψ) = eiξ′·Aeiu′·Vψ = eiξ′·Aψ′ = ψ̂′ . (2.4)

Thus we have a new, nonlinear realization:

g : ξ −→ ξ′, ψ −→ D(eiu′·V )ψ (2.5)

20



Notice what has happened. ξ → ξ′ is a well-defined transformation independent of the

fields in the action; but in order for these fields ψ to have well-defined transformation laws,

we needed ξ, since u′ is a function of ξ. That is why these are called nonlinear realizations.

The ξa are new objects that define the group action of the fields of our theory. When the

symmetry is spontaneously broken G → H , these fields develop dynamics of their own,

and they represent the Goldstone Modes of the model. They have appeared in a totally

different way than what is usually shown – they were required in order for us to be able to

define a nonlinear realization.

There is more than one way to parametrize these modes. A very useful way is to use

the exponential map to write Σ ≡ eiξ·A. When written in this form, the dynamics of the

Goldstone modes is given by the infamous “nonlinear sigma model,” which we shall discuss

next.

2.2 The Nonlinear Sigma Model

Consider N complex scalar fields φa in a generic action

S =

∫

d4x
{

|∂µφ|2 − V (φ)
}

. (2.6)

Ignoring V (φ) for the moment, we have a built in SU(N) symmetry:

φ −→ Uφ U †U = 1 . (2.7)

Let us realize this symmetry nonlinearly by defining

φ̂ = eiξ
′

·Aφ ≡ Σφ , (2.8)

where the Aa are a set of generators whose complement generates a subgroup1 H of SU(N).

Then the kinetic term in the Lagrangian can be written in terms of this new field:

L0 = ∂µ(φ̂∗
aΣ

a
b )∂

µ(Σ†b
c φ̂

c)

= |φ̂|2Tr[∂µΣ†∂µΣ] + |∂µφ̂|2 + Tr[jµAµ] , (2.9)

1For example, H = SU(N − 1), SO(N), or the trivial group.
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where

[jµ]ab = iφ̂∗
b

↔

∂µ φ̂a , (2.10)

Aµ = Σ†∂µΣ , (2.11)

and I have used Σ†Σ = 1. Funny, does this Aµ remind you of something??

Now if we make the assumption that V (φ) = V (φ∗φ), a very reasonable assumption in

practice, then the change of field (2.8) does not affect the potential. Dropping the hat, we

therefore have:

S =

∫

d4x
{

|φ|2Tr[∂µΣ†∂µΣ] + |∂µφ|2 + Tr[jµAµ] − V (φ)
}

. (2.12)

Why did we go through all this nonsense? It looks worse than before! But now imagine

that V (φ) picks out a vev for |φ| = v through the mechanism of spontaneous symmetry

breaking2 G→ H . Now the derivative terms vanish and we can ignore the current jµ as well

as the kinetic term for φ. The potential gives a constant at the minimum which we can also

ignore, and our final result is

L = v2Tr[∂µΣ†∂µΣ] (2.13)

This is the action of the nonlinear sigma model and it comes out quite generically in

nonlinear realizations of spontaneously broken symmetries.

2.3 Effective Field Theories and the Chiral Lagrangian

Now that we understand how symmetries can be realized nonlinearly with the explicit in-

troduction of Goldstone modes. and how when a symmetry is spontaneously broken those

Goldstone modes develop dynamics in the form of the nonlinear sigma model, we would

like to use this powerful new tool to develop a methodology for doing physics. Because it

is so very famous, and carries with it almost all the features of effective field theories in

general, we will spend some time discussing the Chiral Lagrangian. This was originally used

to understand the strong nuclear force and the low energy behavior of mesons and baryons.

However, it is a very generic model whose features can be applied to almost anything.

2For example, if 〈φa〉 = vδa1, then H = SU(N − 1) is still a linearly realized symmetry.
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I am not going to discuss the details of meson physics here – that is a topic unto itself, and

not necessarily of interest to everyone in the audience. For those that are interested, there

are plenty of references out there that talk in great detail about it. A very good reference,

for this and so many other things, is [8].

In addition, at this time I’m going to start using two-component spinors, something that

many people do not use. Since the chiral lagrangian is, well, chiral, it makes sense to do

things in terms of Weyl spinors. Also, for any students interested in going to to study

supersymmetry and the MSSM, another chiral theory, Weyl spinors play a predominant role

there as well. I have provided a lightning review of what is important to understand this

lecture in the appendix to this chapter; for more details take a look at the excellent review

just published [9].

The general scheme for constructing an effective theory follows four basic steps:

1. Identify the degrees of freedom and physical scales in the problem.

2. Identify the symmetries of these degrees of freedom by encoding them into
fields and writing down their free (kinetic) actions.

3. Write all the interactions allowed by the symmetries, including source terms
that are also allowed to transform under the symmetries.

4. Fix the various sources based on what you want to describe.

We will spend the rest of this lecture discussing the canonical example of this algorithm.

2.3.1 Constructing the Chiral Lagrangian

Below roughly 1 GeV, it is known that there are three spin 1
2

degrees of freedom (u, d, s)

that are nearly massless, each behaving as a color triplet:

L0 = Aa
LbqLai6Dqb

L + Aa
RbqRai6Dqb

R , (2.14)

where 6D ≡ σ ·D, and Dµ is the QCD covariant derivative. Recall that in four dimensions,

a spin 1
2

degree of freedom is normally described by two Weyl fields. In general, these

fields have nothing to do with each other, and there is a symmetry in this action given by
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U(3)L × U(3)R, under which qL = (3, 0) and qR = (0, 3), with barred fields in the conjugate

representation3. We can use this chiral symmetry to independently set AL = AR = 1. Also

note that in this two-component notation, all spinors are in the (1
2
, 0) representation, while

the barred spinors are in the (0, 1
2
) representation, regardless of the L,R label. If you are

uncomfortable with this, see the appendix.

In this basis, we can add to 2.14 some source terms:

L = L0 + qL(σ · l)qL + qR(σ · r)qR − qL(s− ip)qR − qR(s+ ip)qL , (2.15)

where lµ, rµ are vector sources in the adjoint representation of U(3)L,R and s, p are real

scalar and pseudoscalar sources in the bifundamental representation. So in summary, (2.15)

is invariant under the following transformations:

qL −→ LqL , (2.16)

qR −→ qRR
† , (2.17)

lµ −→ LlµL
† + iL∂µL

† , (2.18)

rµ −→ RlµR
† + iR∂µR

† , (2.19)

(s+ ip) −→ L(s+ ip)R† . (2.20)

Notice that we are allowing the chiral transformations to be local in general; this will be

important later when we talk about how to embed electromagnetism into the picture.

Now at these energies, QCD is nonperturbative, and we must look to some other ex-

pansion. Fortunately, one is available: a derivative (or energy/momentum) expansion. It is

also believed that QCD dynamics spontaneously breaks the chiral symmetry to the vector

subgroup:

SU(3)L × SU(3)R −→ SU(3)D ,

defined by4 L = R. It does this by giving a vev to the chiral condensate

〈qLqR〉 = σ σ −→ σ(LR†) . (2.21)

This does seem to happen from experiment and lattice calculations, although how this ac-

tually happens is still not strictly understood.

3Notice that qR is is in the conjugate representation of SU(3)R – it is the antiquark.
4You’ll notice that I’ve pulled a fast one and dropped the U(1) factors! We’ll come back to those later.
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Since we have a spontaneously broken symmetry, we know that we should look for a

nonlinear realization of the full chiral symmetry (again ignoring the U(1)s for now) that are

linear on the vector subgroup5. So let us write:

L = UV , (2.22)

R = U †V , (2.23)

where V ∈ SU(3)D and U ∈ SU(3)2/SU(3)D. From this we see that the chiral condensate

(2.21) transforms as

LR† = U2 ≡ Σ , (2.24)

where Σ ≡ e2iΠ/f and Π ≡ ΠaT a are the Goldstone modes. Written in this form, it is clear

that under a full SU(3)2 transformation,

Σ −→ LΣR† = U(V ΣV †)U . (2.25)

So Σ is an adjoint (octet) under the SU(3)D and something rather funny under the coset

space. Notice the amazing power of the nonlinear sigma model: the Π fields have horribly

complicated nonlinear behavior under the transformations (as can be seen from a brute force

expansion of (2.25)), but the Σ field transforms rather simply.

Now that we have worked out the degrees of freedom and the symmetries, we can proceed

to step 3 in our schema and try to write down all the interactions that are allowed by the

symmetries:

1. No derivatives: there are no interactions here other than a constant, since Σ†Σ = 1.

However, there is the source terms involving (s± ip)

2. One derivative: there are no interactions here since there is nothing to couple the

Lorentz index with except the vector sources, but this is forbidden by gauge invariance.

3. Two derivatives: Here we have the nonlinear sigma model kinetic term, (2.13). How-

ever, we must now convariantize the derivatives.

5In this particular case, the vector subgroup is a normal subgroup, so the cosets also form a subgroup
called the axial subgroup. However, this is purely a coincidence and as I mentioned before, does not
happen in general.
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So we find that the most general action to two derivatives is:

L =
f 2

2

{

µTr[(s+ ip)Σ] + µTr[Σ†(s− ip)] +
1

2
Tr[DµΣDµΣ]

}

− 1

4g2
L

LµνL
µν − 1

4g2
R

RµνR
µν

(2.26)

where f and µ are parameters with dimensions of mass, the 1
2
s are chosen to canonically

normalize the Π fields, and

DµΣ ≡ ∂µΣ − ilµΣ + iΣrµ , (2.27)

Lµν ≡ ∂µlν − ∂νlµ + [lµ, lν ] , (2.28)

and similarly for Rµν . Notice that these covariant derivatives are forced on us since the

vector sources can be thought to come from a local symmetry.

Notice the all important fact that there is no longer any mention of QCD in (2.26) – the

only remaining part of QCD is the unknown parameters f and µ. In principle, we could

calculate these parameters in QCD, but since we don’t know how to use QCD consistently at

these low energies, these numbers become phenomenological parameters that must be mea-

sured. However, once they are measured, then we can start to make quantitative predictions

with this theory. This is the power of effective field theory: it allows you to compartmental-

ize everything you don’t know, and then you can proceed to calculate physical observables

in terms of these quantities.

There is plenty of things we can do at this point. We can use this general Lagrangian

to incorporate other important physics beyond QCD. This is a vital next step, and we will

consider two such examples: quark masses and QED.

Quark Masses

A mass term for the quarks explicitly breaks the chiral symmetry. The interaction at the

quark level is

∆LM = qLMqR + h.c. . (2.29)

But notice that if M was a field that transformed as M → LMR†, then it would be okay.

But wait! We have such a source field already – (s+ ip)! So if we take (2.26) and set

〈s〉 = M 〈p〉 = 0 , (2.30)
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then we have completely incorporated quark mass effects to this order in the derivative

expansion. Wow!

QED

The quarks are electrically charged, with Qu = +2
3

and Qd = Qs = −1
3
. Therefore, this will

also break the chiral symmetry. The quark level QED vertex is

∆LQED = qLi(σ · A)qj
LQ

i
j + (L→ R) . (2.31)

Since QED couples to both L and R fields equally (it is a vectorlike theory) we know that

we can use:

AµQ
i
j =

1

2
(lµ + rµ) . (2.32)

Now you can work out which components of (laµT
a
L)i

j and (ra
µT

a
R)i

j have to vanish and which

get vevs to facilitate this identification. I leave this to you for homework.

This trick of capturing symmetry breaking effects by identifying the sources in an effective

Lagrangian is known as a spurion analysis. This is another one of those gems in the effective

field theorist’s bag of tricks!

2.3.2 Higher Order Effects and Naive Dimensional Analysis

One of the most awesome things about effective field theories is that they can tell you exactly

how they fail! How many people do you know that can do that?!

Consider higher order effects that enter into a calculation. They can come from two

places:

1. Loop diagrams, generally divergent, that come from multiple insertions of operators.

2. 4-derivative (and higher) operators that we ignored in (2.26).

We have the following cardinal rule of effective theories:

These contributions, both occurring at the same order in the energy/momentum
expansion, should give the same order of magnitude answer!
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If this rule were to be violated, then it would invalidate the expansion. As we will see, this

rule carries with it some powerful corollaries.

First, let us consider the O(E4) terms in the effective theory. These operators can have

derivatives, mass insertions or involve photon insertions, leading to operators like

• Tr[DµΣDνΣ
†DµΣDνΣ†]

• Tr[(s+ ip)Σ(s + ip)Σ]

• Tr[LµνΣR
µνΣ†]

It turns out, after a great deal of simplification, there are a total of ten such operators for

an SU(3) chiral Lagrangian.

What are the coefficients of these operators? Just by dimensional analysis, an operator

of dimension d must have a coefficient that goes like

c
f 2

Λd−2
χ

, (2.33)

where c is a dimensionless number, and the f 2 factor is there to match to the normalization

we used when defining (2.26). Λχ is the chiral symmetry breaking scale and represents

the energy where the expansion breaks down. In other words, we are doing an expansion in

E/Λχ.

The dimensionless coefficients, like all the other parameters, can in principle be computed

in QCD, but in practice are either measured or computed on a lattice. Since there are no

more large or small numbers to play with, it must be that these coefficients are O(1). If

we were to measure them to be substantially different from unity, it would imply that we

are missing some physics. This is called the naturalness argument. For the case of pion

physics, these parameters are indeed O(1) numbers. In other models, such as the electroweak

model of particle physics, they can potentially be quite large (or small). This is the source of

the “naturalness problem” of particle physics. It tells us that the model we have is probably

missing some important dynamics.

We have seen one way that effective field theories can tell us if something is wrong – that

of naturalness constraints. What else can we learn from higher order terms in the expansion?
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A B C

p→

Figure 2.1: 2 → 2 Goldstone boson scattering diagrams at NLO in the chiral Lagrangian.
The solid dot and circlecross vertices come from the O(E2) and O(E4) terms in the action,
respectively. Not shown are the crossing diagrams of B.

To see what can be done, let us consider the 2−2 scattering of the Goldstone modes coming

from the diagrams in Figure 2.1. Without being too concerned about the details, we can

compute:

MA ∼ p2

f 2

MB ∼
∫

d4q

(2π)4

(p+ q)2/f 2 · (p− q)2/f 2

(q2)2
∼ 1

16π2

[

Λ2 p
2

f 4
+
p4

f 4
log

(

Λ

µ

)]

MC ∼ c
p4

f 2Λ2
χ

where Λ is a momentum cutoff (not to be confused with the chiral symmetry breaking scale)

and µ is the subtraction point that comes along whenever you renormalize. Summing up

these contributions, we find:

M(ππ → ππ) ∼ p2

f 2

[

1 +
1

16π2

(

Λ

f

)2
]

+
p4

f 4

[

1

16π2
log

(

Λ

µ

)

+
cf 2

Λ2
χ

]

+ finite . (2.34)

The first term is a pure renormalization of f , and we need not worry about it. The second

term, on the other hand, is deep! Recalling that the final answer cannot depend on µ, we

can ask what happens by changing µ → µe. It must be compensated for by an appropriate

change in c:

µ → µe ⇒ c→ c−
Λ2

χ

16π2f 2
(2.35)

But wait – we already said that c must be O(1) to maintain the perturbative expansion.

Then we conclude that in order for this theory to make sense:

Λχ ∼ 4πf (2.36)

Wow! By insisting that the chiral Lagrangian had to make sense, the effective theory had

the decency to tell us precisely how seriously we can take it! The result in (2.36) is quite
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generic, and is called naive dimensional analysis, or NDA. For the case of pion physics,

fπ ∼ 100 MeV, so we predict that Λχ ∼ 1 GeV, and we expect the chiral Lagrangian to work

only for energies much below this scale. Sure enough: there is a new particle that is not

included in our theory, called the ρ meson6, with a mass at 770 MeV. Is this a coincidence?

I think not!

At the scale Λχ, the effective theory breaks down and it is no longer correct to identify the

mesons as the physical degrees of freedom. Chiral symmetry is restored and you must work

with a theory of quarks. Fortunately, QCD becomes (nearly) perturbative at that scale. I

say nearly: charm quark physics (mc ∼ 1 GeV), and to a lesser extent bottom quark physics

(mb ∼ 5 GeV), is quite difficult since you are technically outside the legitimate range of

perturbative QCD and the chiral Lagrangian! There you need new effective field theories to

describe the physics. This is the origin of such EFTs as Heavy Quark Effective Theory; Soft

Collinear Effective Theory; and Nonrelativistic QCD. All of these theories have their own

subtleties, but they all still obey the basic principles we worked out here. I will not mention

them again, but encourage you to look at them on your own. A great starting point is [10].

Aside: One can repeat the same analysis for the standard model of particle physics
without a Higgs boson, which is the same kind of model that we have discussed
here. In that case f = v ∼ 200 GeV, and NDA tells us ΛEWSB ∼ 2 TeV. This is
called the electroweak scale. This tells us that if there is no Higgs boson, then there
must be new physics at or below this scale. This is why the LHC is guaranteed to
be a worthwhile experiment.

2.4 Power Counting

Now I would like to leave the chiral Lagrangian behind, and wrap up this lecture with a

technique that is generic to any effective field theory calculation. We have seen that the

power of EFT is that it keeps only the operators one needs to compute a physical process to

a given order of accuracy. The method used to keep track of the “relevance” of operators is

called power counting. We will have more to say about this later in the course, but let us

see how one goes about doing it in the simplest cases.

6You can incorporate the ρ meson into the chiral Lagrangian if you wish – it is a vector meson, so you
imagine it has a gauge symmetry associated with it, etc. Doing this improves the story somewhat, but it is
of limited use in practice.
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The idea is to assign a field a given scaling

φ(x) → λdφ(xλdx) , (2.37)

where d, dx are chosen wisely. Typically, for example, you would like to choose d so the the

free action is invariant under the rescaling. d is called the scaling dimension of the field.

Notice that since the action is an integral over D dimensional spacetime, it implies that

the free Lagrangian should scale like

L → λ−DdxL , (2.38)

assuming all the xµ scale the same way; that is, the theory is Lorentz covariant7.

Consider a scalar field. It is a straightforward exercise to show, using ∂µ → λ−dx∂µ that

if we want (2.37)–(2.38) to hold, we need

d =
2 −D

2
dx . (2.39)

In a Lorentz covariant theory, it is standard to chose dx = −1, so the scaling dimension

corresponds to the mass dimension and ordinary dimensional analysis; but this choice is

certainly not unique, nor is it always the best choice to use. Deciding what to chose for dx,

and deciding whether one should treat all the xµ the same way, is a nontrivial decision about

the nature of the system you are trying to describe with your EFT.

Once you have determined the scaling dimension of every field, you can proceed to de-

termine the scaling dimensions of every local operator8, which can always be written down

as a product of N fields:

O =

N
∏

n=1

φn , dO =

N
∑

n=1

dn , (2.40)

where φn need not be scalar fields in general, of course. Since these operators can appear in

the action, they also come with coefficients that enforce the scaling:

S =

∫

dDx ciOi ⇒ dci
= −(Ddx + dOi

) (2.41)

This (with dx = −1) leads to an amazing theorem:

7This certainly does not need to be the case. For example in any nonrelativistic EFT, or in SCET where
there is a preferred direction.

8Nonlocal operators are trickier, and we will not consider them at all in this course.
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Theorem 9 If dOi
> 0, which is always the case for local operators, then dci

≤ D .

• Operators with dOi
< D (dci

> 0) are called relevant.

• Operators with dOi
= D (dci

= 0) are called marginal.

• Operators with dOi
> D (dci

< 0) are called irrelevant.

We can now state the rule for constructing an EFT:

You must keep all relevant and marginal operators in your theory, plus any number
of irrelevant operators up to a fixed scaling dimension, depending on the level of
accuracy you are aiming for.

This brings up an important and perhaps surprising point: relevant operators are

BAD! They are big trouble, because we cannot forsake them! But irrelevant operators are

great, because we have much more control over how important they are. Fortunately for us,

Theorem 9 tells us that unless there are fields with d = 0, there are only a finite number

of relevant operators. The famous counterexample to this is scalar field theory in D = 2.

However, strange things happen there. These theories are conformal, and EFT fails us! We

will not speak of this again, but it is important to remember that there are limits to this

formalism.

An amusing point: this is probably exactly the opposite of what you are used to thinking

– after all, irrelevant operators are “nonrenormalizable.” But in fact, these are the good

operators! We will talk much more about these points when we discuss the renormalization

group toward the end of the course.

Aside: In the standard model of particle physics, it is also amusing to notice that
there is only one relevant operator that you can write down: the Higgs mass. All
other operators are marginal or, if you allow yourself to give up on renormalizability,
irrelevant. This is again strongly related to the naturalness problem of the Higgs
sector.

32



2.5 Appendix: Some notes on spinors

It has come to my attention that several students are not comfortable with the conventions

of two-component spinors. This is very important and useful, so let me briefly discuss the

conventions here. For a much better and in depth discussion, take a look at [9].

Recall that in D = 4, there are two types of Weyl spinors:

• (1
2
, 0) are named “Left-handed spinors” and describe left handed paritlces and right

handed antiparticles.

• (0, 1
2
) are named “Right-handed spinors” and describe right handed paritlces and left

handed antiparticles.

That one spinor describes both modes is required by the CPT theorem.

It has become convention to ALWAYS use left handed spinors – that is, fields that

transform in the (1
2
, 0) representation of the Lorentz group. Notice that if ψ is a left handed

spinor, then ψ is a right handed spinor, where in two component notation, you can think of

an overline as a dagger (there is no γ0 like in four component notation).

With this convention in mind, we have the following rule:

• ψL ≡ LH spinor describing a LH particle + CPT conjugate.

• ψR ≡ LH spinor describing a LH antiparticle + CPT conjugate.

So in two component notation, you should think of L,R as describing “particle” or “antipar-

ticle,” rather than chirality.

To translate this into four component notation, ψL and ψR pair up to form a Dirac spinor:

ΨD ≡
(

ψL

ψR

)

ΨD = (ψR ψL) . (2.42)

Notice how the lower component is ψR – that is very important! Then we can work out some
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spinor products:

ΨDΨD = ψLψR + ψLψR , (2.43)

ΨDγ
µΨD = ψRσ

µψR + ψLσ
µψL , (2.44)

... (2.45)

This convention is used everywhere, especially among the SUSY community. It is very

powerful, and very useful, since it eliminates the need to keep track of things like γ5 and C,

the “charge conjugation matrix.”

Finally, in Dirac notation, we have

ΨL =
1

2
(1 − γ5)ΨD = ψL , (2.46)

ΨR =
1

2
(1 + γ5)ΨD = ψR !! (2.47)

Again, notice the conjugation on the right handed field! Therefore, in order to translate

spinors from two to four component notation we need the rule:

ΨL ↔ ψL

ΨR ↔ ψR

Finally, let me say something about index notation of two-spinors. There is a useful

mnemonic where all (1
2
, 0) spinors come with a plain index ψα while all (0, 1

2
) spinors come

wtih a dotted index ψα̇. Indices are always contracted with the two component Levi-Civita

symbol9 εαβ or εα̇β̇ . Notice that these symbols always come with the same type of index.

When manipulating these tensors, the following identities may be useful:

εijε
jk = −δk

i , (2.48)

εijε
kl = δk

i δ
l
j − δl

iδ
k
j . (2.49)

You can take a product of a left and right spinor, and this will give you a new object

that has a dotted and plain index, in the (1
2
, 1

2
) representation. This is a vector, and can

9To see this, think about how you construct a singlet state out of two spin 1

2
degrees of freedom in

quantum mechanics. Also, think about the Young tableau.
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be given an explicit vector index using the Pauli matrices σµ

αβ̇
and σµ

α̇β (notice the order of

spinor indices). These obey the useful identities

σµ
αα̇σ

β̇β
µ = 2δα

β δ
α̇
β̇
, (2.50)

σµ
αα̇σµββ̇ = 2εαβεα̇β̇ . (2.51)

Combined with the fact that the Weyl fields obey a Grassman (anticommuting) algebra,

we have some useful identities

ξχ = χξ , ξχ = χξ ,

ξσµχ = −χσµξ , ξσµσνχ = χσνσµξ .

I leave the proofs of these to you. From these, we can also prove the two-component Fierz

Identities [9]

(χξ)(θφ) = −(χθ)(φξ) − (χφ)(ξθ) , (2.52)

(θσµχ)(ξσµφ) = −2(θφ)(χξ) , (2.53)

(θσµχ)(ξσµφ) = +2(θξ)(χφ) . (2.54)
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Chapter 3

What Quantum Does to Symmetries

Everything that we have been doing so far has assumed that if we have a symmetry at the

classical level, then it is there at the quantum level as well. If it is broken spontaneously

we know what to do, and if it is broken explicitly we can still get far using the technique

of spurion analysis. But what if the symmetry is not broken by the vacuum or an explicit

operator, but by the quantum effects themselves? When this happens, we say that the

symmetry is anomalous, or that the symmetry is “dynamically broken.” In this lecture, we

will consider how this can happen, and what it does to our effective theory.

3.1 Anomalies in the Path Integral

At the quantum level, a typical (perturbative) QFT is defined by an action (dynamics),

a vacuum, and a regulator. This last item is vital – QFT perturbation theory requires a

regulator to extract finite resuts, except for very special circumstances. Furthermore, one

regulator does not give you the same answer as another regulator. While it is true that

physical results must of course by regulator independent, the perturbative QFT itself is not.

With this in mind, we can make a definition:

Definition 16 A symmetry is anomalous if it is realized in the action either linearly or

nonlinearly, but is violated by the regulator – for all regulators.

The last point about the symmetry breaking happening for every regulator is very im-

portant, as can be shown by a famous counterexample. Consider QED with momentum

cutoff. It is well known that the momentum cutoff breaks the gauge symmetry, since it
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qµ→

Figure 3.1: Photon self energy diagram in QED.

removes some of the momentum modes from the theory so gauge transformations cannot be

completely cancelled. Sure enough, at one loop you have a quadratically divergent photon

mass from Figure 3.1

Πµν ∼ gµνΛ2 + · · · (3.1)

However, if instead of using momentum cutoff, you used Pauli-Villars or dimensional regu-

larization, which does maintain the gauge symmetry, this no longer happens:

Πµν = (gµνq2 − qµqν)Π(q2) , (3.2)

where Π(q2) can only be logarithmically divergent at worst. So even though there is a

particular regulator that breaks the gauge symmetry, this is not anomalous.

There are many ways to derive anomalies, but I have always thought that the path

integral is the cleanest. Amusingly, it was thought for a long time that the existence of

anomalies was the nail in the coffin for path integrals, since no one knew how to derive

them. It was not until the late 1970s that Fujikawa [11] figured out the trick, and therefore

path integral anomalies are sometimes called “Fujikawa anomalies.”

Recall that if you have a set of fields φa, not necessarily scalars, and an action on these

fields S[φ], the path integral is given by

Z[J ] ≡
∫

Dφ eiS[φ(x)]+i
R

ddxJ(x)φ(x) , (3.3)

and in principle, all the physics, both classical and quantum, is contained in Z, analogous

to the partition function in statistical mechanics.

Now recall Hamilton’s principle from classical field theory:

Under variations of φ : S[φ0 + δφ] = S[φ0], where φ0 is the solution to the classical field
equations.
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To see how this is generalized to QFT, consider what happens to the path integral under

such a variation:

Z →
∫

Dφ eiS[φ+δφ] =

∫

Dφ eiS[φ(x)]

[

1 +

(

i
δS

δφ

)

δφ+ · · ·
]

, (3.4)

where we have used that D(φ + δφ) = Dφ since it is just a shift of coordinates. We will

return to this point later.

So we have:

Z ′ = Z +

∫

Dφ eiS[φ(x)]

(

i
δS

δφ

)

δφ

= Z

[

1 +

〈(

i
δS

δφ

)

δφ

〉]

. (3.5)

Now since the path integral is independent of φ – it is only a dummy variable, after all –

Z = Z ′ for an arbitrary choice of δφ, and so

〈(

i
δS

δφ

)〉

= 0 . (3.6)

This is just the correspondence principle at work! QFT people call this (and its generalization

with more operator insertions) the Schwinger-Dyson Equations. See [7] for a more in depth

discussion of these equations.

Using the same techniques, we can derive the QFT version of Noether’s theorem:

Theorem 10 Assume that there is a classical symmetry of the action:

S[φ+ δφ] = S[φ] ,

where unlike before, this is true for all φ, not just a solution of the field equations, and δφ is

the symmetry transformation, which we parametrize as δφ ≡ ǫ∆φ. Then

δS[φ] =

∫

ddx ǫ∂µj
µ , (3.7)

where jµ is the Noether current.

Now let us see what happens in the path integral:

Z →
∫

Dφ eiS[φ]+
R

ddx ǫ(∂µjµ) (3.8)
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Since this is supposed to be a symmetry, Z cannot depend on ǫ, so

1

Z

δZ

δǫ
= 〈∂µj

µ〉 = 0 . (3.9)

So once again, we recover Noether’s theorem through the correspondence principle.

However, there is a big flaw in this argument: I have been very cavalier about the

behavior of the measure during all of these changes of coordinates. Indeed, the measure

generally transforms as

Dφ′ = Dφ J [φ] , (3.10)

where

J [φ] ≡ det

(

δφ′

δφ

)

= e
Tr log

“

δφ′

δφ

”

= eTr log(1+iǫC) = eiTr(ǫC) . (3.11)

and φ′ = (1 + iǫC)φ is an infinitesimal linear transformation. So in fact, we really have

Z ′ =

∫

Dφ eiS[φ]+
R

ddx ǫ(∂µjµ+tr(C)) (3.12)

and Noether’s theorem becomes

1

Z

δZ

δǫ
= 〈∂µj

µ + tr(C)〉 = 0 . (3.13)

If tr C = 0 then nothing has changed. But if tr C 6= 0 then this is the anomaly equation.

Classically, tr C will vanish, but once you go to the quantum theory, it might not. In

particular – the regulator might cause it to develop a finite piece [11].

3.2 The Chiral Anomaly and It’s Consequences

The classic example of an anomaly, and the one I will be discussing in this lecture, is the

chiral anomaly. Recall that massless fermions have two (classically) conserved currents:

jµ = ΨγµΨ = ψRσ
µψR + ψLσ

µψL , (3.14)

jµ
5 = Ψγµγ5Ψ = ψRσ

µψR − ψLσ
µψL . (3.15)

jµ is the fermion number current that couples to gauge bosons. If it is anomalous, then the

gauge symmetry is dynamically broken. This is a disaster – it would signal a breakdown of

unitarity, and is definitely something we do not want. However, jµ
5 is the “axial number”
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current and it can do whatever it wants! It is well known that it is anomalous, and the

anomaly equation is

∂µj
µ
5 = −g

2T (R)

16π2
ǫµνρσF a

µνF
a
ρσ , (3.16)

for an SU(N) theory coupled to (massless) fermions in the representation R.

As always, it is convenient to work in two component notation and define

jµa
L = ψLσ

µT aψL , (3.17)

jµa
R = ψRσ

µT aψR , (3.18)

so that jµ = jµ
R + jµ

L and jµ
5 = jµ

R − jµ
L. Then in general, any chiral theory1 will have

an anomaly in both jµ
L and jµ

R such that the anomaly cancels in the sum and adds in the

difference:

∂µj
µa
L = +

g2Aabc

32π2
ǫµνρσF b

µνF
c
ρσ , (3.19)

∂µj
µa
R = −g

2Aabc

32π2
ǫµνρσF b

µνF
c
ρσ , (3.20)

where A is a new group theory index object that we must try to work out. To compute it,

consider the correlation function of three L currents C(x, y, z) = 〈jµa
L (x)jνb

L (y)jρc
L (z)〉. To

leading order, this correlator is given by the diagrams in Figure 3.2.

µ a

ν b

ρ c

µ a

ρ c

ν b

Figure 3.2: Triangle diagrams that are generated by the three point correlation function of
chiral currents.

Let us compute the group theory structure. Since they involve closed loops, there is a

trace over generators. We have for fermions in representation R

C ∼ Tr[T a
RT

b
RT

c
R] + Tr[T a

RT
c
RT

b
R] = Tr{T a

R[T b
R, T

c
R]+} (3.21)

1A chiral theory is any theory of fermions that treat left and right fermions differently. This is the
opposite of a vectorlike theory, which treats left and right fermion fields the same way. Agan, remember
that “left” and “right” really mean “particle” and “antiparticle” in this language.
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But this is nothing more than the expression for the anomaly coefficient (1.14). This is

where it gets its name. In addition, remember that if {T a
1 } generate the group G1 and {T a

2 }
generate the group G2, then the traces factorize Tr[T1 ⊗ T2] = Tr[T1] · Tr[T2].

Thus to compute anomalies, one must first compute the anomaly coefficients of the

theory, for which there are tables and rules discussed at the end of the first lecture. In

particular, there is the very important rule that A(R) = −A(R). This means that a theory

of Dirac fermions is always anomaly free! Also, if you have fermions that transform in a real

representation, either vectorlike or something like the Adjoint representation, then there is

no anomaly. Finally, only SU(N) groups with N ≥ 3 or U(1) groups2 can have anomalies,

since they’re the only groups with complex representations.

An amusing sidenote: in Figure 3.2 we can attach gravitons to two of the vertices (re-

placing the chiral currents with energy-momentum tensors), and then the anomaly would be

proportional to Tr(T a). This can be nonvanishing only for U(1), and it leads to the important

result that unless all the charges of the fields sum to zero, the theory has a “gravitational

anomaly.” This is why people will say, “gravity breaks global symmetries.”

If the symmetries are global, anomalies can lead to interesting physics. For example, in

the chiral Lagrangian, it is the dominant contribution to the decay of the π0 to two photons.

However, if we gauge the chiral symmetry, it is very important that there are no anomalies,

otherwise there would be the usual story of unitarity breakdown. This is a very important

constraint on model building. The standard model, for example, is anomaly free because of

its funny “flavor structure” – see [7].

3.3 Anomalies and Instantons

Unfortunately, time ran out before I had a chance to give this lecture, but I’ll include my

notes here for possible future expansions.

2The generator for a U(1) is just the charge matrix, so for anomalies to vanish, the charges, or products
of charges, must sum to zero.
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Chapter 4

Quantum Bible Stoires: “Death and
Rebirth of Scale Invariance”

As we have seen earlier in Lecture 2, many actions have a natural “scale invariance,” where

you can define a “scaling dimension,” which is naively just set from dimensional analysis1,

and keep track of the importance of various terms in the effective action by computing these

dimensions. Even if scale invariance is not an exact symmetry, you can use a spurion analysis

to keep track of symmetry breaking terms as well, such as mass terms. This leads to some

very powerful theorems, analogous to the Ward Identities of gauge theories, that tell us a

lot about the nature of correlation functions coming out of such a theory. And we will find

that these theorems are wrong!

These lectures come almost directly out of Sidney Coleman’s lecture given in Chapter 3

of [12].

4.1 “Low Energy” Theorems

To begin, let me remind you how the Ward Identity goes:

Theorem 11 If φ are a set of fields that transform as δφ under a symmetry with a current

1These numbers from dimensional analysis are also sometimes called the engineering dimension of the
field or operator.
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jµ where ∂µj
µ = ∆, we have

∂

∂yµ
〈jµ(y)φ(x1) · · ·φ(xn)〉 = 〈∆(y)φ(x1) · · ·φ(xn)〉

−iδ(4)(y − x1)〈δφ(x1) · · ·φ(xn)〉
...

−iδ(4)(y − xn)〈φ(x1) · · · δφ(xn)〉 . (4.1)

The Low Energy Theorems come from doing
∫

d4y of both sides of this identity:

∫

d4y〈∆(y)φ(x1) · · ·φ(xn)〉 = i〈δφ(x1) · · ·φ(xn)〉 + · · · + i〈φ(x1) · · · δφ(xn)〉 (4.2)

This result is the basis for many other results, most famously the “partially conserved axial

current (PCAC)” hypothesis of nuclear physics, where the current in question is the axial

vector current discussed in the last lecture and ∆ is the pion mass operator; then this ex-

pression leads to the celebrated “Goldberger-Trieman” relation. Notice that like the Optical

Theorem, it is one of those exact, nonperturbative statements, and therefore must be used

carefully in combination with perturbative statements.

4.2 Scaling Symmetry and Its Consequences

We would like to apply (4.2) to the scaling symmetry2

δφ = (d+ xµ∂µ)φ(x) , (4.3)

where d is the scaling dimension of the field. For now, we will identify it with the engi-

neering dimension mentioned above, but we will see that this is not right in general.

For an action to be scale invariant, at least classically, all operators must have scale

dimension equal to the spacetime dimension D, so

L → L + (D + xµ∂µ)L . (4.4)

Then this will vanish in the action after integration by parts.

2Notice that δφ ≡ φ′(x′) − φ(x).
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Notice that we already see a problem, since you know that products of fields at the same

spactime point are funny things in the quantum theory since these fields will not commute.

But this aside, the action is still invariant, so long as d(L) = D.

The corresponding scale current is given by

sµ ≡ xνΘ
µν , (4.5)

where Θµν is the energy momentum tensor. That the current depends on Θ is not surprising,

since scale symmetry is a spacetime symmetry. So for a scale invariant theory

∂µs
µ = Θµ

µ = 0 (4.6)

where we have used the conservation of momentum ∂µΘµν = 0.

Aside: The energy momentum tensor in (4.5) is not the same as the symmetric
energy-momentum tensor T µν that couples to classical gravity. This is a subtle but
vitally important point! Recall that energy-momentum tensors can only be defined
up to four divergences

T µν
1

∼= T µν
2 + ∂αΛαµν ,

where Λαµν = −Λµαν and Λαµν = −Λνµα. Θµν is a very particular choice of tensor
where this freedom is removed.

Now let us consider the low energy theorem for scale invariance. For definiteness and

simplicity, I will consider a (real) scalar field

L =
1

2
(∂µφ)2 − 1

2
m2

0φ
2 − 1

4!
λ0φ

4 , (4.7)

where I included naughts on the couplings to remind you that at this stage I am working

with the unrenormalized action. Define Γ(n)(p1, . . . , pn) to be the 1PI renormalized Green’s

functions with n external lines, and Γ
(n)
∆ (k; p1, . . . , pn) as the 1PI renormalized Green’s func-

tions with n external lines and one insertion of ∆ ≡ ∂µs
µ = m2φ2, which in the case of a

real scalar field and the scale current (notice that this is the renormalized mass). Then the

low energy theorem (4.2) can be written as
[

n−1
∑

i=1

pi ·
∂

∂pi
+ nd− 4

]

Γ(n)(p1, . . . , pn) = −iΓ(n)
∆ (0; p1, . . . , pn) . (4.8)

The first two terms are the transformation law for a product of n fields in momentum space

– the sum is only over n − 1 of the momenta because of an overall momentum-conserving
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delta function; the 4 comes from the scaling of this residual delta function. Notice that the

right hand side is evaluated at k = 0, hence the name “low energy theorem.” The proof of

this expression is a direct application of Fourier transforms to (4.2) and the definition of the

1PI coefficients from the effective action

Γ[φ] =

∫

dDx
∑

n

1

n!
Γ(n)φn .

It is useful to define a new variable

s =
n
∑

i=1

p2
i ; (4.9)

all kinematics can then be described in terms of the variable s and the dimensionless four-

vector products pi · pj/s. Then ordinary, boring dimensional analysis tells us

Γ(n) = s(4−n)/2Fn

( s

m2
, λ,

pi · pj

s

)

, (4.10)

where again, λ,m2 are the renormalized coupling and mass, and Fn is a dimensionless func-

tion. Now using the chain rule and rewriting terms, we can write

[

m
∂

∂m
+ n(1 − d)

]

Γ(n)(p1, . . . , pn) = −iΓ(n)
∆ (0; p1, . . . , pn) (4.11)

This is the version of the low energy scale theorem that we will be studying.

Now I would like to introduce a very powerful theorem from QFT called the Weinberg

Power Counting Theorem3

Theorem 12 In the “deep Euclidean regime” (DER) where s→ ∞, pi · pj/s =constant, we

have

Γ(n) −→ s(4−n)/2 f
(

log
( s

m2

))

, (4.12)

Γ
(n)
∆ −→ s(2−n)/2 f̃

(

log
( s

m2

))

. (4.13)

The f, f̃ are polynomials in the log, and their coefficients depend on the coupling constant λ

and the (constant) kinematic variables pi · pj/s.

3Actually, this is only a small corollary to the full power counting theorem, but it’s enough for our
purposes.
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You can think of the DER as the limit that the energy goes to infinity with the scattering

angles held fixed. Γ∆ has a lower power of s since the mass insertion replaces a p2 somewhere.

This means that in the DER, Γ ≫ Γ∆. Combining this with our low energy theorem (4.8)

and using d = 1 gives

m
∂

∂m
Γ(n) = 0 , (4.14)

and so Γ(n) has no log(s/m2) to all orders in perturbation theory!

This is amazing! This is incredible! And this is wrong!! Anyone who has done a one loop

calculation in φ4 theory knows that the 2 → 2 scattering amplitude has logarithms in it. So

we conclude that scale invariance must be an anomalous symmetry!

Aside: It was not necessary to go to the DER – just easier. You might worry
that doing this is rather silly, and that it is not surprising things break down in
a region of phase space that is not even physical. The counterargument to this
goes as follows: low energy theorems are valid for any value of coupling constant
and momenta, including the DER. So to show that it doesn’t work anywhere, it is
enough to show that it doesn’t work somewhere. Coleman gets into this more in
[12], and I encourage you to go through his argument carefully.

4.3 Fixing the Scaling Anomaly I: Anomalous Dimen-

sions

Recall the chiral anomaly from the previous lecture

∂µj
µ
5 = −g

2T (R)

16π2
ǫµνρσF a

µνF
a
ρσ ≡ ∂µK

µ . (4.15)

It is well known that the right hand side of this anomaly equation is a total divergence.

This means that adding this (naively renormalizable) operator to the action will nave no

effect on perturbative calculations. However, it also means that while jµ
5 is not conserved,

the quantity jµ
5 − Kµ is conserved, although it generally is not gauge invariant! Thus the

axial anomaly is resolved as long as we redefine what “axial charge” is. This leads us to the

famous Atiyah-Singer index theorem.

So you might think that perhaps the same thing will happen with the scale anomaly. Let

us redefine the scaling dimension (ds) of a field (or operator) as

ds = de + γ (4.16)
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where de is the engineering dimension that comes from dimensional analysis, and γ is a new

number called the anomalous dimension that represents the correction to scaling that

comes from the anomaly.

Aside: γ plays the same role as the critical exponent η in condensed matter. From
ordinary dimensional analysis,

〈φ(x)φ(y)〉 =
c

r2de
.

If there are no dimensionful couplings, you might think that there is nothing more
to be said. But if there is a distance scale r0, then c = c0(r/r0)

−2γ and these
contributions do not follow from dimensional analysis. This is the origin of the
anomalous dimension.
In fact, even if there is no such scale at the classical level, there is always the cutoff
at the loop level (in condensed matter, this is the lattice spacing). So there can be
additional powers of r that appear in the correlation functions beyond the ordinary
dimensional analysis story. This is why it is indeed an anomaly!

The anomalous dimension may be small (perturbative) or large – at this point it doesn’t

matter since the low energy theorem is a nonperturbative statement. If this was all there

was to it, then like the chiral anomaly, we would be in great shape!

Unfortunately, this still does not work. To see this, let us reconsider our example of

massive φ4 theory. Using (4.8) with d 6= 1 we still find

m
∂

∂m

(

Γ(4)

[Γ(2)]2

)

= 0 . (4.17)

Thus, while Γ(2), Γ(4) can have logarithms, the above ratio does not. Is this true? Once

again, let us go to the DER. A straightforward calculation (done in [7]) gives

Γ(2) ∼ s+ O(λ2) , (4.18)

Γ(4) ∼ λ+ aλ2 log(s/m2) + bλ2 . (4.19)

Again, a and b can depend on pi · pj/s but are constants in the DER. Taking the ratio above

gives
Γ(4)

[Γ(2)]2
∼ λ

s2
+
aλ2

s2
log(s/m2) + b

λ2

s2
+ O(λ2) . (4.20)

Once again, we find a logarithm4 that the low energy theorem tells us should not be there.

4At first glance, you might think that this term is not there, since as s → ∞ these terms vanish. However,
it is a straightforward exercise to show that if you carefully keep higher order terms in s−1 throughout the
calculation, you cannot cancel this logarithm and so this is a real violation of (4.17).
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So unlike the chiral anomaly, the scale anomaly does not go away so easily.

4.4 Fixing the Scaling Anomaly II: Running Couplings

Let us go back and try to figure out what went wrong. The best way to proceed is to go

back to the unrenormalized theory. Recall

φ0 = Z
1/2
φ φ ⇒ Γ(n) = Z

n/2
φ Γ

(n)
0 . (4.21)

Also recall that Γ
(n)
∆ = ZZ

n/2
φ Γ

(n)
0∆ for some Z such that Γ

(n)
∆ is finite. Putting this together

with the low energy theorem we have

m0
∂

∂m0
Γ

(n)
0 (pi) = iΓ

(n)
0∆(0; pi) . (4.22)

Multiplying both sides by ZZ
n/2
φ and inserting 1 = (Zφ/Zφ)

n/2 inside the derivative, we find

iΓ
(n)
0∆(0; pi) = Zm0

∂

∂m0
Γ(n)(pi) −

n

2
Zm0

∂ logZφ

∂m0
Γ(n)(pi) . (4.23)

This is not quite what we want, since Γ(n) is only finite when expressed in terms of m and

not m0, so using the chain rule, we get

iΓ
(n)
0∆(0; pi) =

[(

Zm0
∂m

∂m0

)

∂

∂m
+

(

Zm0
∂λ

∂m0

)

∂

∂λ
− n

(

Zm0

2

∂ logZφ

∂m0

)]

Γ(n)(pi) . (4.24)

Notice that the only possible cutoff dependence lives inside the three functions inside

the parentheses on the right hand side of this equation. However, they are all constants,

independent of momentum or n, so that by ordinary dimensional analysis, they can only

depend on λ. Choose the finite part of Z so that the first term in parentheses is just

m, the renomalized mass, and calling the second and third terms in parentheses β and γ,

respectively, we can finally state the full low energy theorem for scaling symmetry:

[

m
∂

∂m
+ β(λ)

∂

∂λ
− nγ(λ)

]

Γ(n)(pi) = iΓ
(n)
0∆(0; pi) (4.25)

This equation is known as the Callan-Symanzik Equation, and it is this equation that

correctly describes scaling.

There are some things to say about this equation:
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• If β ≡ 0, then indeed, we are as we were with the chiral anomaly – scaling dimensions

are shifted from the engineering dimension by a constant γ, but the low energy theorems

from earlier still hold. However, the cases where β ≡ 0 are rare, and correspond to the

conformal field theories.

• The scaling low energy theorem is quite useless in general! For the chiral case, we

were able to use the low energy theorems to relate one Γ(n) to another. If β ≡ 0, then

we could still do that, such as (4.17). These are the conformal Ward identities

discussed in [13], for example. However, we have lost that power here. Only if you

knew β exactly could you hope to do this. But if you know β (and γ) exactly, then

you have solved the entire problem, and you are wasting your time with low energy

theorems!

• In the DER, we can ignore Γ
(n)
∆ (0; pi) and the Callan-Symanzik equation becomes the

renormalization group equation. Its solution in terms of t ≡ 1
2
log(s/m2) is well

known:

Γ(n) = s(4−n)/2 F (n)(λ(λ, t), pi · pj/s) e
−n

R t
t0

dt′γ(λ(λ,t))
, (4.26)

where

dλ

dt
= β(λ) , (4.27)

λ(λ, t0) = λ , (4.28)

and F (n) is an unknown function of the remaining variables. So up to the “running

coupling” effects, we have the same scaling prediction from the low energy theorems.

This tells us that the RG equations are only valid in the DER! There are ways around

this, however. See [12], chapter 3.4 for more details.
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Chapter 5

The Coleman-Weinberg Effective
Potential

Theories of scalar fields are very important to a theorist. From a model building point of

view, they are the simplest theories you can write down, so they are always a good place

to start. Also, if a theory is Lorentz invariant, the effective degrees of freedom can often

be modeled by effective scalar fields. This is what happens, for example, in theories of the

inflaton, the Higgs mechanism, etc. Also, scalar fields appear naturally in supersymmetric

theories, or in theories of spontaneous symmetry breaking.

In this lecture we will discuss the behavior of theories of scalar fields. The primary

reference that I’ll be following very closely is the must read paper by Sidney Coleman and

Erick Weinberg [14]. Most of the important material, and a lot of other useful bits of

information, can also be found in Coleman’s Aspects of Symmetry, Chapter 5 [12].

The million dollar question is: Can we have a situation where the quantum effects push

the couplings around in such a way that we generate a vacuum where the symmetry is spon-

taneously broken, even if there is no such vacuum at tree level?

5.1 Behavior of the Effective Action

We talked about how if a scalar potential V (φ) is such that 〈φ〉 6= 0 when φ is charged under

a symmetry group G, then G is spontaneously broken. For example,

V0(φ) = m2|φ|2 + λ|φ|4 ⇒ 〈φ〉 = 0, ±
√

−m2

2λ
. (5.1)
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So if m2 < 0 there is spontaneous symmetry breaking. But implicit in all of this logic was

the statement that m2, λ are the renormalized mass and coupling. If (5.1) is the tree level

result, we know that at higher order we will have

V (φ) = m2|φ|2 + λ|φ|4 + · · · (5.2)

where m2, λ are radiatively corrected, and the ellipses refer to higher dimensional operators

that are generated with finite coefficients, since V0 is renormalizable.

This leads to a question: Can we have a situation where V0(〈φ〉) has a minimum at

〈φ〉 = 0, but V (〈φ〉) has a minimum at 〈φ〉 6= 0? And if so, what are the effective mass and

couplings?

To understand the answers to these questions, it is best to work with the effective action

Γ[φc] = W [J ] −
∫

d4x J(x)φc(x) (5.3)

This can be thought of as the “Gibbs Free Energy” of the field theory. Previously we used

the expansion of Γ in terms of 1PI functions, but now we’re going to do a different expansion

– the momentum (or derivative) expansion:

Γ[φc] =

∫

d4x[−Veff(φc) +
1

2
Z(φc)(∂µφc)

2 + · · · ] (5.4)

In particular, if we study φc(x) ≡ φc (constant), then only the first term contributes to the

effective action. This term without the volume integral, is called the effective potential.

Now in our case, we have the effective potential in (5.2), where

m2(µ) ≡ d2Veff

dφ2
c

∣

∣

∣

∣

φc=µ

(5.5)

λ(µ) ≡ d4Veff

dφ4
c

∣

∣

∣

∣

φc=µ

(5.6)

These are our renormalization conditions. There are a few things to say at this stage:

• These renormalization conditions are a little funny: they are defined at values of φc,

not at p2 like usual, since now p2 = 0. This distinction will be important in what

follows.

• As long as there are no IR divergences, which now appear as φc → 0, we can safely set

µ = 0 in the renormalization conditions above. But in general, µ 6= 0, and as we will

be interested in theories with IR divergences, we will keep it explicit in what follows.
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(a) (b)

Figure 5.1: One loop diagrams. (a) Scalar loops. (b) Vector loops.

5.2 A Simple (perhaps too simple) Example

Consider a massless real scalar field theory:

L =
1

2
(∂µφ)2 − λ

4!
φ4 +

1

2
A(∂µφ)2 − 1

2
Bφ2 − 1

4!
Cφ4 , (5.7)

where A,B,C are counterterms.

Now let us perform the loop expansion on this theory. The way this works is as follows:

imagine that the action scales with a quantity a, so S[φ, a] = S[φ]/a. Then it is clear that

every propagator in a diagram gives a factor of a and every vertex gives a factor of a−1, so

every diagram goes like aI−V , where I is the total number of internal lines, and V is the

total number of vertices. But from elementary graph theory, L− I + V = 1; therefore every

graph scales like aL−1, so a loop expansion is like an expansion in a.

The one loop diagrams from (5.7) are particularly straightforward, they are given gener-

ally by Figure 5.1a. They always take the form of a single loop with an arbitrary number of

φ2 insertions. Summing over all such insertions gives

∆V (φc) = i

∫

d4k

(2π)4

∞
∑

n=1

1

2n

( 1
2
λφ2

c

k2 + iε

)n

. (5.8)

Some words about the factors:

• The factor of i out in front is from the definition of the path integral.

• The 1
2n

is a combinatoric factor – rotations ( 1
n
) and reflections (1

2
) of the loop do not

change the diagram, so the 1
n!

in Dyson’s formula is not completely cancelled.
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• The 1
2

in the numerator is an extra bose factor, since exchanging two external lines at

the same vertex does not give a new diagram, so the 1
4!

in the vertex is not completely

cancelled.

This sum is straightforward, and after Wick rotating we find up to an irrelevant constant

∆V =
1

2

∫

d4kE

(2π4)
log

(

k2
E +

1

2
λφ2

c

)

. (5.9)

Notice that this integral is IR divergent as φc → 0. This is exactly what we expected would

happen. But as long as we keep away from the origin in field space, we are okay. Also notice

that it is UV divergent, but this should not bother anyone. You can regulate any way you

want. Let us use momentum cutoff. Then we find

Veff(φc) =
λ

4!
φ4

c +
1

2
Bφ2

c +
1

4!
Cφ4

c +

(

λΛ2

64π2

)

φ2
c +

λ2φ4
c

256π2

[

log

(

λφ2
c

2Λ2

)

− 1

2

]

. (5.10)

Now we impose the renormalization conditions:

d2Veff

dφ2
c

∣

∣

∣

∣

φc=0

= 0 ⇒ B = −
(

λΛ2

32π2

)

, (5.11)

d4Veff

dφ4
c

∣

∣

∣

∣

φc=µ

= λ ⇒ C = − 3λ2

32π2

[

log

(

λµ2

2Λ2

)

− 11

3

]

. (5.12)

I have chosen to let µ = 0 in the first renormalization condition since that is not IR divergent,

but I cannot do that in the definition of λ. As a quick aside, notice that even if we choose

the mass to vanish at µ = 0, it will not vanish for another subtraction point; this is the

source of the “hierarchy problem” of scalar field theory.

Plugging in these counterterms, we find the final, one loop effective potential to be

Veff(φc) =
λ

4!
φ4

c +
λ2φ4

c

256π2

[

log

(

φ2
c

µ2

)

− 25

6

]

(5.13)

Notice that there are no longer any log(λ) terms – this is great news, since we would never

have found them using ordinary perturbation theory! In addition, the λ counterterm has

the general form C(µ) = −β(λ) log(µ) + · · · so

β(λ) = +
3λ2

16π2
. (5.14)

By keeping track of external momenta, we can also compute Z and hence A – this would

give us the anomalous dimension γ. It turns out that at one loop, γ = 0, which is proved
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a different way, along with (5.14) in [7]. Finally, notice that with this choice of running,

dV
dµ

= 0, as it should!

Does this potential have a nontrivial minimum? As a matter of fact it does, at

λ log

(〈φc〉
µ

)

= −16π2

3
+

11

6
λ . (5.15)

Is this real? Since µ is arbitrary, let us chose µ = 〈φc〉/2. This gives us |λ(〈φc〉)| ∼ 50 –

this is certainly outside the realm of perturbation theory, and so we have no right to take it

seriously!

5.3 A Less Trivial Example

Even though the massless φ4 theory turned out to be something of a dud, there are other

theories that are more promising. The simplest example of such a theory is massless scalar

electrodynamics

L = −1

4
F µνFµν + |Dµφ|2 −

λ

6
|φ|4 + counterterms . (5.16)

where φ ≡ (φ1 + iφ2)/
√

2 and Fµν = ∂µAν − ∂νAµ and Dµ ≡ ∂µ + ieAµ. It turns out to be

very convenient to work in Landau gage, where the photon propagator is

−ig
µν − kµkν/k2

k2 + iε
,

since then diagrams of the type

vanish with external momenta. This is not true in a general gauge! With these single vertices

gone, the only diagrams are the two types in Figure 5.1, where Figure 5.1a have both φ1 and

φ2 running around the loop. The vertices in Figure 5.1b have a vertex e2, and it can be shown

that the final answer can only depend on φ2
1 + φ2

2, so the final one loop effective potential

after renormalization in this case is

Veff(φc) =
λ

6
|φc|4 +

(

5λ2

288π2
+

3e4

16π2

)

|φc|4
[

log

(

φ2
c

µ2

)

− 25

6

]

. (5.17)
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Now consider the couplings (e, λ). Even if we try to set λ = 0, we regenerate it through

a one loop diagram in Figure 5.1b with two vertices. This diagram is roughly proportional

to e4 log(Λ/µ) so NDA tells us that the “natural” size of λ ∼ e4. So let us choose this value

for λ – we’ll come back to this later. With this choice, we must drop the O(λ2) terms from

(5.17) to be consistent. Let us now search for a minimum of this effective potential. Sure

enough, setting the first derivative to zero at φc = v gives

(

λ

6
− 11e4

16π2

)

v3 = 0 . (5.18)

So we find that as long as we chose a very precise value1 for λ, we do have a minimum of

the effective potential that breaks the U(1) gauge symmetry! Choosing this value of λ and

setting µ = v gives us

Veff(ϕc) =
3e4

16π2
ϕ4

c

[

log

(

ϕ2
c

v2

)

− 1

2

]

(5.19)

where I have defined ϕ2
c = φ2

1 + φ2
2. Notice that we have removed all dependence of Veff on

λ and introduced another parameter v. Thus we have not lost any information (we started

with two parameters, we ended with two parameters), but we have replaced a dimensionless

parameter with a dimensionful one! This is somewhat surprising, but it is a standard result

when doing loops, closely related to the scaling anomaly discussed in the last lecture. This

phenomenon has been labeled dimensional transmutation.

In this minimum we can also predict the mass of the scalar field, which is no longer zero

but it is loop suppressed:

m2
s ≡ d2Veff

dϕ2
c

∣

∣

∣

∣

ϕc=v

=
3e4

8π2
v2 . (5.20)

The photon mass is given by the usual formula mV = ev, so that both masses are given in

terms of the free parameter v. But their ratio is independent of v

m2
s

m2
V

=
3α

2π
(5.21)

which is an amusing and generic result. When [14] was published, it was a hopeful possi-

bility that this might describe the Higgs mechanism that breaks the electroweak symmetry.

Unfortunately for the authors, this is not the case. But the ideas are still widely applicable.

1Notice that this value of λ is consistent with our power counting – this is very important, otherwise it
would not work.
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You might think we have gone and done something terribly illegal! We chose a very

particular value of λ. What if we didn’t feel like choosing that? What if we chose a different

value? Then we would not satisfy (5.18) except for v = 0 and it looks like we can only find

a minimum for a very careful tuning of parameters.

The counterargument is that a change of λ can always be compensated for by a change

of µ, and since we chose µ = v, this means that moving away from the value of λ defined

in (5.18) will ultimately just change v (and e). So the question is: can changes in the

running couplings completely capture the effects of moving away from (5.18)? And if so,

do we still have a minimum in general? To answer that question, we must study how the

renormalization group affects the picture painted in this section.

5.4 “RG Improved” Perturbation Theory

Let us reconsider the φ4 theory we started with, where we calculated the effective potential

in (5.13). In fact, you can show that

lim
φc→0

Veff = −∞ , (5.22)

and so it looks like φc = 0 is a maximum, and there is a new minimum at (5.15). The

problem with this conclusion is that n loop diagrams generally give factors of [λ log(φc/µ)]n,

so since the minimum has this number O(100) means that the one loop calculation is not

trustworthy, and we had better not take this minimum (or the above maximum) seriously.

This realization leads us to ask if there is any way to capture these log effects without actually

doing a higher loop diagram, which is quite difficult and a general mess! Fortunately, in many

case of interest, there is a way using renormalization group methods, although the precise

form of the equations will be slightly different than what you might be used to, since we are

no longer working with 1PI coefficients but with effective potentials.

Recall the renormalization group equation:

[

µ
∂

∂µ
+ β

∂

∂λ
+ γ

∫

d4x φc(x)
δ

δφc(x)

]

Γ[φc(x)] = 0 . (5.23)
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Doing the momentum expansion of the effective action (5.4) gives us
[

µ
∂

∂µ
+ β

∂

∂λ
+ γφc

∂

∂φc

]

Veff = 0 , (5.24)

[

µ
∂

∂µ
+ β

∂

∂λ
+ γφc

∂

∂φc
+ 2γ

]

Z = 0 . (5.25)

It is useful to work instead with V (4) ≡ d4V
dφ4

c
and to define

β ≡ β

1 − γ
, (5.26)

γ ≡ γ

1 − γ
. (5.27)

Also notice that µ and φc can only appear as the ratio µ/φc since both V (4) and Z are

dimensionless. Defining t ≡ log(φc/µ), we have
[

− ∂

∂t
+ β

∂

∂λ
+ 4γ

]

V (4)(t, λ) = 0 , (5.28)

[

− ∂

∂t
+ β

∂

∂λ
+ 2γ

]

Z(t, λ) = 0 , (5.29)

and the renormalization conditions

V (4)(0, λ) = λ , (5.30)

Z(0, λ) = 1 . (5.31)

We can solve these equations in the most general case, assuming we know what β and γ are.

We get

Z(t, λ) = e2
R t
0

dt′ γ[λ(t′,λ)] , (5.32)

V (4)(t, λ) = λ(t′, λ)[Z(t, λ)]2 , (5.33)

where as usual
dλ

dt
= β(λ), λ(0) = λ . (5.34)

Now let us return to the φ4 example. Differentiating (5.13) gives

V (4)(t, λ) = λ+
3λ2t

16π2
. (5.35)

Using (5.14) and γ = 0 we can solve the running equation for λ:

λ(t, λ) =
λ

1 − 3λt/16π2
, (5.36)
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and since Z = 1, we have V (4)(t, λ) = λ(t, λ). One can now integrate this up to get the total

Veff(φc), using the fact that we already have its form to O((λt)2) to fix any constants.

Notice an amazing thing: for our original calculation to be trustworthy, we needed both λ

and |λt| to be perturbative. But now, we only need |λ(t, λ)| to be perturbative. In particular,

as t→ −∞ (φc → 0), λ→ 0 and we are still okay. In fact, Veff is a minimum at the origin,

and the funky minimum of (5.15) has completely vanished into the Aether! We were right

not to trust it.

However, as t → 16π2

3
, λ → ∞ and our calculation is garbage. This is called a Landau

Pole. Its existence tells us that there is a scale at which our approximations break down,

and we must give up using our effective field theory.

Now let us repeat this exercise for massless scalar QED, where

Γ[φc] =

∫

d4x[−Veff(φc) + Z(φc)|Dµφc|2 −
1

4
H(φc)FµνF

µν + · · · ] . (5.37)

We keep our previous renormalization conditions, with H(µ) = 1 as well. Again, we have

V (4) = λ+

(

5λ2

24π2
+

9e4

4π2

)

t , (5.38)

Z = 1 +
3e2

8π2
t , (5.39)

H = 1 − e2

24π2
t , (5.40)

and these all must satisfy
[

− ∂

∂t
+ β

∂

∂λ
+ βe

∂

∂e
+ 4γ

]

V (4)(t, e, λ) = 0 , (5.41)

[

− ∂

∂t
+ β

∂

∂λ
+ βe

∂

∂e
+ 2γ

]

Z(t, e, λ) = 0 , (5.42)

[

− ∂

∂t
+ β

∂

∂λ
+ βe

∂

∂e
+ 2γ

]

H(t, e, λ) = 0 , (5.43)

where βe = −eγe, which just a consequence of the Ward Identity. Solving for these equations

at φc = µ gives

γ =
3e2

16π2
, (5.44)

βe =
e3

48π2
, (5.45)

β =
1

4π2

(

5

6
λ2 − 3e2λ+ 9e4

)

. (5.46)
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These equations can be solved, and we get the rather ugly

e2(t) =
e2

1 − e2t/24π2
, (5.47)

λ(t) =
e2(t)

10

{

√
719 tan

[√
719

2
log e2(t) + θ

]

+ 19

}

, (5.48)

where θ is an integration constant to make sure λ = λ when e2 = e2 (t = 0).

What can we learn from these hideous equations? Let us start by looking at the running

of e2. Notice that it has a Landau pole, so once again our approximations break down

at some high scale (large, positive t). However, for large negative t, e2 stays small which

makes log e2 in the expression for λ start to grow, and ultimately the tangent will blow up;

so we cannot go to the origin, unlike the φ4 case. But because of this logarithm, λ[e2(t)]

spans the entire real line, even for a small range of e2 – for example, e2 ∈ (e2/2, 2e2). So

as long as λ starts small, we can always make it O(e4) by adjusting µ, and therefore v,

and our previous analysis holds. So indeed, massless scalar QED does undergo spontaneous

symmetry breaking, and there is no tuning!

5.5 Generalizations of the Coleman-Weinberg Poten-

tial

We have seen how computing the effective potential can give us very different qualitative

behavior from the naive tree level behavior. But even more generally, we might want to

compute the one loop effects to the theory (shifts in masses, couplings, new interactions,

etc). The technique developed here will do that for us.

Consider an arbitrary (not necessarily renormalizable) theory of scalars, fermions and

gauge fields. We would like to compute the full, one loop potential for the scalars φa, where

I’m indexing the scalars (traditionally called “flavor indices”), although they may or may

not fall into a given representation of a symmetry group. Also, I will assume throughout

that all scalars are real; the generalization to complex scalars is immediate.

To see how we can put on external legs to a loop, notice that two (and only two) scalars

in a given vertex must go into the loop, and the remaining ones are external lines – it is more

complicated at higher loops, but for the one loop approximation, this is right. Therefore the
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vertex is proportional to

[M2
s ]ab ≡ ∂2V0

∂φa∂φb
, (5.49)

where V0 is the tree level scalar potential. Thus we have n insertions of M2
s around the

loop and the sum over n, and since it is a loop we must trace over flavor indices. After

generalizing the calculation in the text, we find

∆Vs =
cs

64π2
Tr

{

M4
s

[

log

(

M2
s

Λ2

)

− 1

2

]}

+ counterterms (5.50)

where cs = 1, 2 for real (complex) scalar fields.

When computing fermion loops, we can write the most general vertex

ψa[MF ]abψb + 4 or more fermions,

where here I am using Dirac fermions and I am ignoring any more than two fermions, since

such operators will not contribute to the one loop scalar potential. Here MF is a general

matrix that can depend on the scalars. Loops will contribute chains of the form

· · ·MF
1

6qMF
1

6q · · · = · · · (MFM
†
F )

1

q2
· · · (5.51)

This can be seen by including Dirac indices onMab
F ≡ Aab+iγ5Bab. There are some important

differences with the scalar case:

1. Since fermions have arrows, the 1
2

in (5.8) is missing since reflections are different

graphs.

2. Odd terms vanish when tracing over γ matrices, and this compensates for the 1
2

we

dropped from (1).

3. Fermi-Dirac statistics means that there is an overall minus sign in the potential.

4. Tracing over spinor indices gives a factor of 2 for each Weyl degree of freedom.

So in conclusion, we have

∆Vf = − cf
64π2

Tr

{

(MFM
†
F )2

[

log

(

(MFM
†
F )

Λ2

)

− 1

2

]}

+ counterterms (5.52)
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where cf = 1, 2 for Weyl (Dirac) fields.

Finally, we can do a more general analysis of (possibly nonabelian) gauge fields, which

couple to the scalars like
1

2
gµνAa

µA
b
ν [M

2
V ]ab ,

where

[M2
V ]ab ≡ gagb(T

aφ) · (T bφ) no sum over a, b .

This is the only relevant interaction in Landau gauge. Now it it identical to the scalar case,

except there is an overall

Tr[gµν − kµkν/k2] = gµν [g
µν − kµkν/k2] = 3 .

Therefore we have

∆Vv =
3

64π2
Tr

{

M4
V

[

log

(

M2
V

Λ2

)

− 1

2

]}

+ counterterms (5.53)

The full one loop effective potential is then just the sum of (5.50), (5.52), and (5.53).
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Chapter 6

Gauge Symmetries

I wanted to have a series of lectures on gauge symmetries, including BRST invariance, Rξ

gauges and the relationship of gauge symmetry to renormalizability, but I had no time. Also,

although interesting, I have never seen this stuff used in practical applications, only in more

formal developments. So I’m leaving this chapter blank for the moment, and perhaps I’ll

come back to it in the future...
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Advanced Topics in EFT

Homework 1 Due: Monday, October 6, 5PM

1. (a) Compute the dimensions of the following representations in SU(N):

(b) Compute the following products of representations in SU(5):

⊗ ⊗

Express your final answers in terms of the dimensions, being sure to include

whether or not it’s the conjugate representation, if necessary.

2. In class we showed that in SU(3): 8 ⊗ 3̄ = 15 ⊕ 6 ⊕ 3̄. Prove this explicitly by

symmetrizing indices. Hint: Recall that invariant tensors are either symmetric and

traceless, or antisymmetric. Be sure to keep track of covariant vs contravariant indices

– it will make your life much easier!

3. Consider the quantum D=3 simple harmonic oscillator.

(a) When written in terms of creation/annihilation operators, it is immediately clear

that the system has an SU(3) symmetry. Find the conserved charges of this

symmetry.

(b) Since this is a symmetry of the Hamiltonian, we know that there will be degenera-

cies among the energy eigenstates. Find these degeneracies and show that they

completely explain the degeneracies that you calculated in your quantum class!

Classify the energy eigenstates in terms of SU(3) representations.
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(c) Show that built into this symmetry, there lives an SU(2) subgroup that can be

identified with the overall rotational symmetry of the problem. Use this to derive

the angular momentum operator L.

(d) Suppose I add a term to the Hamiltonian ∆H = αL2. Describe what happens to

the first four energy levels.
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Advanced Topics in EFT

Homework 2 Due: Monday, October 20, 5PM

1. The Cartan Algebra of the group SU(n + 1) in the fundamental representation is

spanned by the traceless matrices

Hk =
1

√

2k(k + 1)
Diag{1, . . . , 1,−k, 0, . . . , 0} k = 1, . . . , n (.1)

where there are k “1”s and we’re following the usual convention that Tr[T aT b] = 1
2
δab.

The other generators are various embeddings of the Pauli matrices; see your favorite

Group theory text for details. Consider the symmetry breaking SU(4) → SU(3)×U(1).

(a) Consider how a field in the fundamental of SU(4) transforms under the symmetry

after breaking. Find both its representation under SU(3) and its charge under

the U(1). Hint: A fundamental of SU(N) transforms as δaF i = i[T a]ijF
j .

(b) Repeat the above for a field in the adjoint of SU(4). Hint: An adjoint of SU(N)

transforms as δaAb = i[T a, Ab].

(c) Assume that there is a term in the Hamiltonian of the system that transforms

in the fundamental (4) representation. Using the generalization of the Wigner-

Eckart Theorem to SU(N), how many reduced matrix elements are required to

describe the transitions (1, 0, 0) → (3, 0, 0), (1, 1, 0)?

2. Using arguments of effective field theory, explain why the sky is blue:

(a) Identify the relevant degrees of freedom and energy/length scales.

(b) Write down the free action and construct a scaling rule for each relevant field.

(c) Find the leading operators and use them to “compute” the scattering cross section

of light in the atmosphere.
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Note: this is not a Jackson problem – do not treat it as such!!

3. Finish what we started in class by embedding QED into the SU(3) Chiral Lagrangian.

Find the currents in terms of the Σ field.
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Advanced Topics in EFT

Homework 3 Due: Thursday, November 6, 12 PM

1. Reading Homework: Read and understand K. Fujikawa, Phys. Rev. Lett. 42, 1195

(1979).

2. Consider an SU(N) gauge theory with L left handed fermions and R right handed

fermions. Suppose that the L fermions transform under the representation of the

gauge group, while the R fermions transform as antifundamentals. For what values (if

any) of (L,R) does this theory make sense?

3. Consider a very generic situation - an SU(N) gauge symmetry (N ≥ 3) with an

SU(F )L × SU(F )R global flavor symmetry, where F left handed fermions1 transform

in the fundamental of SU(F )L and a singlet of SU(F )R; and F right handed fermions

transform in the antifundamental of SU(F )R and a singlet of SU(F )L.

(a) Derive a condition that a U(1) must satisfy so that it is not anomalous if both L

and R fermions are fundamentals (antifundamentals) under the gauge group.

(b) Now add a new fermion that transforms in the adjoint of the gauge symmetry,

but a singlet under the flavor symmetry. What charge must it have to keep the

symmetries non-anomalous?

1Recall that ALL fermions are in the (1

2
, 0) representation of the Lorentz group, so “right handed fermions”

means “left handed antifermions”.

67



Advanced Topics in EFT

Homework 4 Due: Friday, December 5, 5PM

1. Read, understand, absorb S. Coleman, E. Weinberg, Phys. Rev. D7 1888 (1973).

2. Consider a massless real scalar and a massless Weyl fermion with interactions:

LI = gφ(ψψ + ψ̄ψ̄) − λ

4!
φ4 (.1)

(a) Compute the 1 loop Coleman-Weinberg effective potential for the scalar.

(b) Compute the beta functions and anomalous dimensions, and use them to solve

for the running couplings. As above, use MS scheme.

(c) Construct the RG-improved 1 loop effective potential.

3. Consider supersymmetric QED: there is a (Dirac) electron (eL, eR); two complex scalar

fields (call them ẽL, ẽR) with the same quantum numbers and mass as the electron (L)

and positron (R); a photon; and a neutral (Weyl) fermion (the gaugino λ) that couples

to the electrons and scalars with coupling e, the gauge charge:

L0 = −1

4
FµνF

µν + |DµẽL|2 + |DµẽR|2 −m2(|ẽL|2 + |ẽR|2)

+ēLiσ̄ ·DeL + eRiσ ·DēR −m(eLeR + ēLēR)

+λ̄iσ̄ · ∂λ + e
√

2[λeLẽ
∗
L − λeRẽ

∗
R] + h.c. (.2)

where Dµ = ∂µ + ieAµ is the usual covariant derivative. Now add a single, massless,

neutral (real) scalar field φ.
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(a) Write down the most general, renormalizable action (in d = 4) describing the

couplings of φ.

(b) Construct the one loop Coleman-Weinberg effective potential for the scalars. As

always, use Landau gauge and minimal subtraction (that is – treat Λ as your

subtraction scale).

(c) Using this potential, compute the mass of the scalars. Explain your results.
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