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Lecture 0

Introduction

The particle physics master course will be given in the autumn semester of 2011 and
contains two parts: Particle Physics 1 (PP1) and Particle Physics 2 (PP2). The PP1
course consists of 12 lectures (Monday and Wednesday morning) and mainly follows the
material as discussed in the books of Halzen and Martin and Gri�ths.

These notes are my personal notes made in preparation of the lectures. They can
be used by the students but should not be distributed. The original material is found
in the books used to prepare the lectures (see below).

The contents of particle physics 1 is the following:

� Lecture 1: Concepts and History

� Lecture 2 - 5: Electrodynamics of spinless particles

� Lecture 6 - 8: Electrodynamics of spin 1/2 particles

� Lecture 9: The Weak interaction

� Lecture 10 - 12: Electroweak scattering: The Standard Model

Each lecture of 2� 45 minutes is followed by a 1 hour problem solving session.

The particle physics 2 course contains the following topics:

� The Higgs Mechanism

� Quantum Chromodynamics

In addition the master o�ers in the next semester topical courses(not obligatory) on
the particle physics subjects: CP Violation, Neutrino Physics andPhysics Beyond the
Standard Model

Examination

The examination consists of two parts: Homework (weight=1/3) and an Exam (weight=2/3).

1



2 Lecture 0. Introduction

Literature

The following literature is used in the preparation of this course (the comments reect
my personal opinion):

Halzen & Martin: \Quarks & Leptons: an Introductory Course in Modern Particle
Physics ":
Although it is somewhat out of date (1984), I consider it to be the best book in the �eld
for a master course. It is somewhat of a theoretical nature. It builds on the earlier work
of Aitchison (see below). Most of the course follows this book.

Gri�ths: \Introduction to Elementary Particle Physics", second, revised ed.
The text is somewhat easier to read than H & M and is more up-to-date (2008) (e.g.
neutrino oscillations) but on the other hand has a somewhat less robust treatment in
deriving the equations.

Perkins: \Introduction to High Energy Physics", (1987) 3-rd ed., (2000)4-th ed.
The �rst three editions were a standard text for all experimental particle physics. It is
dated, but gives an excellent description of, in particular, the experiments. The fourth
edition is updated with more modern results, while some older material is omitted.

Aitchison: \Relativistic Quantum Mechanics"
(1972) A classical, very good, but old book, often referred to by H & M.

Aitchison & Hey: \Gauge Theories in Particle Physics"
(1982) 2nd edition: An updated version of the book of Aitchison; a bit more theoretical.
(2003) 3rd edition (2 volumes): major rewrite in two volumes; very good but even more
theoretical. It includes an introduction to quantum �eld th eory.

Burcham & Jobes:\Nuclear & Particle Physics"
(1995) An extensive text on nuclear physics and particle physics. It contains more
(modern) material than H & M. Formula's are explained rather than derived and more
text is spent to explain concepts.

Das & Ferbel: \Introduction to Nuclear and Particle Physics"
(2006) A book that is half on experimental techniques and half on theory. It is more
suitable for a bachelor level course and does not contain a treatment of scattering theory
for particles with spin.

Martin and Shaw: \Particle Physics ", 2-nd ed.
(1997) A textbook that is somewhere inbetween Perkins and Das & Ferbel. In my
opinion it has the level inbetween bachelor and master.

Particle Data Group: \Review of Particle Physics"
This book appears every two years in two versions: the book and the booklet. Both of
them list all aspects of the known particles and forces. The book also contains concise,
but excellent short reviews of theories, experiments, accellerators, analysis techniques,
statistics etc. There is also a version on the web: http://pdg.lbl.gov
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The Internet:
In particular Wikipedia contains a lot of information. However, one should note
that Wikipedia does not contain original articles and they are certainly not re-
viewed! This means that they cannot be used for formal citations.

In addition, have a look at google books, where (parts of) books are online avail-
able.
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About Nikhef

Nikhef is the Dutch institute for subatomic physics. Although the name Nikhef is kept,
the acronym "Nationaal Instituut voor Kern en Hoge Energie Fysica" is no longer used.
The name Nikhef is used to indicate simultaneously two overlapping organisations:

� Nikhef is a national research lab funded by the foundation FOM;the dutch foun-
dation for fundamental research of matter.

� Nikhef is also a collaboration between the Nikhef institute and the particle physics
departements of the UvA (A'dam), the VU (A'dam), the UU (Utrecht) and the
RU (Nijmegen) contribute. In this collaboration all dutch activities in particle
physics are coordinated.

In addition there is a collaboration between Nikhef and the Rijks Universiteit Gronin-
gen (the former FOM nuclear physics institute KVI) and there arecontacts with the
Universities of Twente, Leiden and Eindhoven.
For more information go to the Nikhef web page: http://www.nikhef.nl

The research at Nikhef includes both accelerator based particle physics and astro-
particle physics. A strategic plan, describing the research programmes at Nikhef can be
found on the web, from: www.nikhef.nl/�leadmin/Doc/Docs & pdf/StrategicPlan.pdf .

The accelerator physics research of Nikhef is currently focusing on the LHC exper-
iments: Alice (\Quark gluon plasma"), Atlas (\Higgs") and LHCb (\C P violation").
Each of these experiments search answers for open issues in particle physics (the state
of matter at high temperature, the origin of mass, the mechanismbehind missing an-
timatter) and hope to discover new phenomena (eg supersymmetry, extra dimensions).
The LHC started in 2009 and is currently producing data at increasing luminosity. The
�rst results came out at the ICHEP 2010 conference in Paris, whilethe latest news of
this summer on the search for the Higgs boson and "New Physics" have been discussed
in the EPS conference in Grenoble and the lepton-photon conference in Mumbai. So far
no convincing evidence for the Higgs particle or for New Physicshave been observed.

In preparation of these LHC experiments Nikhef is/was also activeat other labs:
STAR (Brookhaven), D0 (Fermilab) and Babar (SLAC). Previousexperiments that
ended their activities are: L3 and Delphi at LEP, and Zeus, Hermes and HERA-B at
Desy.

A more recent development is the research �eld of astroparticle physics. It includes
Antares & KM3NeT (\cosmic neutrino sources"), Pierre Auger (\high energy cosmic
rays"), Virgo & ET (\gravitational waves") and Xenon ("dark matt er").

Nikhef houses a theory departement with research on quantum �eld theory and
gravity, string theory, QCD (perturbative and lattice) and B-physics.

Driven by the massive computing challenge of the LHC, Nikhef also has a scienti�c
computing departement: the Physics Data Processing group. They are active in the
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development of a worldwide computing network to analyze thehuge datastreams from
the (LHC-) experiments (\The Grid").

Nikhef program leaders/contact persons:

Name o�ce phone email
Nikhef director Frank Linde H232 5001 z66@nikhef.nl
Theory departement: Eric Laenen H323 5127 t45@nikhef.nl
Atlas departement: Stan Bentvelsen H241 5150 stanb@nikhef.nl
B-physics departement: Marcel Merk N243 5107 marcel.merk@nikhef.nl
Alice departement: Thomas Peitzmann N325 5050 t.peitzmann@uu.nl
Antares experiment: Maarten de Jong H354 2121 mjg@nikhef.nl
Pierre Auger experiment: Charles Timmermans - - c.timmermans@hef.ru.nl
Virgo and ET experiment: Jo van den Brand N247 2015 jo@nikhef.nl
Xenon experiment: Patrick Decowski H349 2145 p.decowski@nikhef.nl
Detector R&D Departement: Frank Linde H232 5001 z66@nikhef.nl
Scienti�c Computing: Je� Templon H158 2092 templon@nikhef.nl
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History of Particle Physics

The book of Gri�ths starts with a nice historical overview of particle physics in the
previous century. Here's a summary:

Atomic Models

1897 Thomson: Discovery of Electron. The atom contains electrons as \plumsin
a pudding".

1911 Rutherford: The atom mainly consists of empty space with a hard and heavy,
positively charged nucleus.

1913 Bohr: First quantum model of the atom in which electrons circled in stable
orbits, quatized as:L = �h � n

1932 Chadwick: Discovery of the neutron. The atomic nucleus contains both
protons and neutrons. The role of the neutrons is associated with the binding
force between the positively charged protons.

The Photon

1900 Planck: Description blackbody spectrum with quantized radiation. No inter-
pretation.

1905 Einstein: Realization that electromagnetic radiation itself is fundamentally
quantized, explaining the photoelectric e�ect. His theory received scepticism.

1916 Millikan: Measurement of the photo electric e�ect agrees with Einstein's
theory.

1923 Compton: Scattering of photons on particles con�rmed corpuscular character
of light: the Compton wavelength.

Mesons

1934 Yukawa: Nuclear binding potential described with the exchange of a quan-
tized �eld: the pi-meson or pion.

1937 Anderson & Neddermeyer:Search for the pion in cosmic rays but he �nds a
weakly interacting particle: the muon. (Rabi: \Who orderedthat?")

1947 Powell: Finds both the pion and the muon in an analysis of cosmic radiation
with photo emulsions.

Anti matter

1927 Dirac interprets negative energy solutions of Klein Gordon equation as energy
levels of holes in an in�nite electron sea: \positron".

1931 Andersonobserves the positron.
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1940-1950Feynmanand St•uckelberg interpret negative energy solutions as the positive
energy of the anti-particle: QED.

Neutrino's

1930 Pauli and Fermi propose neutrino's to be produced in� -decay (m� = 0).

1958 Cowan and Reinesobserve inverse beta decay.

1962 Ledermanand Schwarzshowed that� e 6= � � . Conservation of lepton number.

Strangeness

1947 Rochesterand Butler observeV 0 events: K 0 meson.

1950 AndersonobservesV 0 events: � baryon.

The Eightfold Way

1961 Gell-Mann makes particle multiplets and predicts the
 � .

1964 
 � particle found.

The Quark Model

1964 Gell-Mann and Zweig postulate the existance of quarks

1968 Discovery of quarks in electron-proton collisions (SLAC).

1974 Discovery charm quark (J= ) in SLAC & Brookhaven.

1977 Discovery bottom quarks (� ) in Fermilab.

1979 Discovery of the gluon in 3-jet events (Desy).

1995 Discovery of top quark (Fermilab).

Broken Symmetry

1956 Lee and Yangpostulate parity violation in weak interaction.

1957 Wu et. al. observe parity violation in beta decay.

1964 Christenson, Cronin, Fitch & Turlay observe CP violation in neutral K meson
decays.

The Standard Model

1978 Glashow, Weinberg, Salamformulate Standard Model for electroweak inter-
actions

1983 W-boson has been found at CERN.

1984 Z-boson has been found at CERN.

1989-2000 LEP collider has veri�ed Standard Model to high precision.
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Natural Units

We will often make use ofnatural units. This means that we work in a system where
the action is expressed in units of Planck's constant:

�h � 1:055� 10� 34Js

and velocity is expressed in units of the light speed in vacuum:

c = 2:998� 108m=s:

In other words we often use �h = c = 1.
This implies, however, that the results of calculations must betranslated back to

measureable quantities in the end. Conversion factors are thefollowing:

quantity conversion factor natural unit normal unit
mass 1 kg = 5:61� 1026 GeV GeV GeV=c2

length 1 m = 5:07� 1015 GeV� 1 GeV� 1 �hc=GeV
time 1 s = 1:52� 1024 GeV� 1 GeV� 1 �h=GeV
unit charge e =

p
4�� 1

p
�hc

Cross sections are expressed inbarn, which is equal to 10� 24cm2. Energy is expressed
in GeV, or 109 eV, where 1 eV is the kinetic energy an electron obtains when itis
accelerated over a voltage of 1V.

Exercise -1:
Derive the conversion factors for mass, length and time in the table above.

Exercise 0:
The Z-boson particle is a carrier of the weak force. It has a massof 91.1 GeV. It can
be produced experimentally by annihilation of an electron and a positron. The mass of
an electron, as well as that of a positron, is 0.511 MeV.

(a) Can you guess what the Feynman interaction diagram for this process is? Try to
draw it.

(b) Assume that an electron and a positron are accelerated in opposite directions and
collide head-on to produce a Z-boson in the lab frame. Calculate the beam energy
required for the electron and the positron in order to producea Z-boson.

(c) Assume that a beam of positron particles is shot on a target containing electrons.
Calculate the beam energy required for the positron beam in order to produce
Z-bosons.

(d) This experiment was carried out in the 1990's. Which method do you think was
used? Why?
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Lecture 1

Particles and Forces

Introduction

After Chadwick had discovered the neutron in 1932, the elementary constituents of
matter were the proton and the neutron inside the atomic nucleus, and theelectron
circling around it. With these constituents the atomic elements could be described as
well as the chemistry with them. The answer to the question: \What is the world
made of?" was indeed rather simple. The force responsible for interactions was the
electromagnetic force, which was carried by thephoton.

There were already some signs that there was more to it:

� Dirac had postulated in 1927 the existence ofanti-matter as a consequence of his
relativistic version of the Schrodinger equation in quantum mechanics. (We will
come back to the Dirac theory later on.) The anti-matter partner of the electron,
the positron, was actually discovered in 1932 by Anderson (see Fig. 1.1).

� Pauli had postulated the existence of an invisible particle that was produced in
nuclear beta decay: theneutrino. In a nuclear beta decay process:

NA ! NB + e�

the energy of the emitted electron is determined by the mass di�erence of the nuclei
NA and NB . It was observed that the kinetic energy of the electrons, however,
showed a broad mass spectrum (see Fig. 1.2), of which the maximum was equal
to the expected kinetic energy. It was as if an additional invisible particle of low
mass is produced in the same process: the (anti-) neutrino.

1.1 The Yukawa Potential and the Pi meson

The year 1935 is a turning point in particle physics. Yukawa studied the strong inter-
action in atomic nuclei and proposed a new particle, a� -meson as the carrier of the
nuclear force. His idea was that the nuclear force was carriedby a massive particle

11
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Figure 1.1: The discovery of the positron as reported by Andersonin 1932. Knowing
the direction of the B �eld Anderson deduced that the trace was originating from an
anti electron. Question: how?
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Figure 1. The Beta Decay Spectrum for Molecular Tritium 
The plot on the left shows the probability that the emerging electron has a particular 

energy. If the electron were neutral, the spectrum would peak at higher energy and

would be centered roughly on that peak. But because the electron is negatively

charged, the positively charged nucleus exerts a drag on it, pulling the peak to a

lower energy and generating a lopsided spectrum. A close-up of the endpoint 

(plot on the right) shows the subtle difference between the expected spectra for 

a massless neutrino and for a neutrino with a mass of 30 electron volts. 

Figure 1.2: The beta spectrum as observed in tritium decay to helium. The endpoint
of the spectrum can be used to set a limit of the neutrino mass.Question: how?
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(in contrast to the massless photon) such that the range of this force is limited to the
nuclei.

The qualitative idea is that a virtual particle, the force carrier, can be created for a
time � t < �h=2mc2. Electromagnetism is transmitted by the massless photon and has
an in�nite range, the strong force is transmitted by a massive meson and has a limited
range, depending on the mass of the meson.

The Yukawa potential (also called the OPEP: One Pion ExchangePotential) is of
the form:

U(r ) = � g2 e� r=R

r
where R is called therangeof the force.

For comparison, the electrostatic potential of a point chargee as seen by a test
chargee is given by:

V(r ) = � e2 1
r

The electrostatic potential is obtained in the limit that the range of the force is in�nite:
R = 1 . The constant g is referred to as thecoupling constantof the interaction.

Exercise 1:

(a) The wave equation for an electromagnetic potential V is given by:

2 V = 0 ; 2 � @� @� �
@2

@t2
� r 2

which in the static case can be written in the form of Laplace equation:

r 2 V = 0

Assuming spherical symmetry, show that this equation leads to the Coulomb po-
tential V(r)
Hint: remember spherical coordinates.

(b) The wave equation for a massive �eld is the Klein Gordon equation:

2 U + m2 U = 0

which, again in the static case can be written in the form:

r 2 U � m2 U = 0

Show, again assuming spherical symmetry, that Yukawa's potential is a solution
of the equation for a massive force carrier. What is the relation between the mass
m of the force carrier and the rangeR of the force?

(c) Estimate the mass of the� -meson assuming that the range of the nucleon force is
1:5 � 10� 15 m = 1:5 fm.
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Yukawa called this particle amesonsince it is expected to have an intermediate mass
between the electron and the nucleon. In 1937 Anderson and Neddermeyer, as well as
Street and Stevenson, found that cosmic rays indeed consist of such a middle weight
particle. However, in the years after, it became clear that two things were not right:

(1) This particle did not interact strongly, which was very strange for a carrier of the
strong force.

(2) Its mass was somewhat too low.

In fact this particle turned out to be the muon, the heavier brother of the electron.
In 1947 Powell (as well as Perkins) found the pion to be present in cosmic rays. They

took their photographic emulsions to mountain tops to study the contents of cosmic rays
(see Fig. 1.3). (In a cosmic ray event a cosmic proton scatters with high energy on an
atmospheric nucleon and produces many secondary particles.) Pions produced in the
atmosphere decay long before they reach sea level, which is whythey were not observed
before.

1.2 Strange Particles

After the pion had been identi�ed as Yukawa's strong force carrier and the anti-electron
was observed to con�rm Dirac's theory, things seemed reasonably under control. The
muon was a bit of a mystery. It lead to a famous quote of Isidore Rabi at the conference:
\Who ordered that?"

But in December 1947 things went all wrong after Rochester andButler published
so-calledV 0 events in cloud chamber photographs. What happened was that charged
cosmic particles hit a lead target plate and as a result many di�erent types of particles
were produced. They were classi�ed as:

baryons:particles whose decay product ultimately includes a proton.

mesons:particles whose decay product ultimately include only leptons or photons.

Why were these events calledstrange? The mystery lies in the fact that certain (neutral)
particles were produced (the \V 0's") with a large cross section (� 10� 27cm2), while they
decay according to a process with a small cross section (� 10� 40cm2). The explanation
to this riddle was given by Abraham Pais in 1952 and is calledassociated production.
This means that strange particles are alwaysproducedin pairs by the strong interaction.
It was suggested that strange particle carries astrangenessquantum number. In the
strong interaction one then has the conservation rule �S = 0, such that a particle with
S=+1 (e.g. a K meson) is simultaneously produced with a particle with S=-1 (e.g. a
� baryon). These particles then individuallydecaythrough the weak interaction, which
does not conserve strangeness. An example of an associated production event is seen in
Fig. 1.4.
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Figure 1.3: A pion entering from the left decays into a muon and an invisible neutrino.
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Figure 1.4: A bubble chamber picture of associated production.
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In the years 1950 - 1960 many elementary particles were discovered and one started
to speak of the particle zoo. A quote: \The �nder of a new particle used to be awarded
the Nobel prize, but such a discovery now ought to be punished by a $10.000 �ne."

1.3 The Eightfold Way

In the early 60's Murray Gell-Mann (at the same time also Yuvan Ne'eman) observed
patterns of symmetry in the discovered mesons and baryons. He plotted the spin 1/2
baryons in a so-called octet (the \eightfold way" after the eighfold way to Nirvana in
Buddhism). There is a similarity between Mendeleev's periodic table of elements and
the supermultiplets of particles of Gell Mann. Both pointed out a deeper structure of
matter. The eightfold way of the lightest baryons and mesons isdisplayed in Fig. 1.5
and Fig. 1.6. In these graphs the Strangeness quantum number isplotted vertically.

n
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X

p

X

L

+

+0

- 0

-

Q=-1 Q=0
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S=-2

Q=+1

Figure 1.5: Octet of lightest baryons with spin=1/2.

S=-1

+-

Q=-1 Q=0 Q=1

K

P PP
h

0

K
0

-
K0K-

+
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Figure 1.6: Octet with lightest mesons of spin=0

Also heavier hadrons could be given a place inmultiplets. The baryons with spin=3/2
were seen to form a decuplet, see Fig. 1.7. The particle at the bottom (at S=-3) had not
been observed. Not only was it found later on, but also its predicted mass was found to
be correct! The discovery of the
 � particle is shown in Fig. 1.8.
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Figure 1.7: Decuplet of baryons with spin=3/2. The
 � was not yet observed when
this model was introduced. It's mass was predicted.

Figure 1.8: Discovery of the omega particle.



1.4. The Quark Model 19

1.4 The Quark Model

The observed structure of hadrons in multiplets hinted at an underlying structure. Gell-
Mann and Zweig postulated indeed that hadrons consist of more fundamental partons:
the quarks. Initially three quarks and their anti-particle were assumed to exist (see Fig.
1.9). A baryon consists of 3 quarks: (q; q; q), while a meson consists of a quark and an
antiquark: (q;q). Mesons can be their own anti-particle, baryons cannot.

S=0

S=-1 Q=+2/3

Q=-1/3

s

d u S=+1 s

d

Q=+1/3Q=-2/3

S=0
u

Figure 1.9: The fundamental quarks: u,d,s.

Exercise 2:
Assign the quark contents of the baryon decuplet and the meson octet.

How does this explain that baryons and mesons appear in the formof octets, decu-
plets, nonets etc.? For example a baryon, consisting of 3 quarkswith 3 avours (u,d,s)
could in principle lead to 3x3x3=27 combinations. The answer lies in the fact that
the wave function of fermions is subject to a symmetry under exchange of fermions.
The total wave function must be anti-symmetric with respect to the interchange of two
fermions.

 (baryon) =  (space) � � (spin) � � (f lavour ) � � (color)

These symmetry aspects are reected in group theory where one encounters expressions
as: 3 
 3 
 3 = 10 � 8 � 8 � 1 and 3 
 3 = 8 � 1.

For more information on the static quark model readx2.10 andx2.11 in H&M, x5.5
and x5.6 in Gri�ths, or chapter 5 in the book of Perkins.

1.4.1 Color

As indicated in the wave function above, a quark has another internal degree of freedom.
In addition to electric charge a quark has a di�erent charge,of which there are 3 types.
This charge is referred to as the color quantum number, labelled asr, g, b. Evidence
for the existence of color comes from the ratio of the cross section:

R �
� (e+ e� ! hadrons)
� (e+ e� ! � + � � )

= NC

X

i

Q2
i

where the sum runs over the quark types that can be produced at the available energy.
The plot in Fig. 1.10 shows this ratio, from which the resultNC = 3 is obtained.
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Figure 1.10: The R ratio.

Exercise 3: The Quark Model

(a) Quarks are fermions with spin 1/2. Show that the spin of a meson (2 quarks) can
be either a triplet of spin 1 or a singlet of spin 0.
Hint: Remember the Clebsch Gordon coe�cients in adding quantum numbers.
In group theory this is often represented as the product of twodoublets leads to
the sum of a triplet and a singlet:2 
 2 = 3 � 1 or, in terms of quantum numbers:
1=2 
 1=2 = 1 � 0.

(b) Show that for baryon spin states we can write:1=2
 1=2
 1=2 = 3=2� 1=2� 1=2
or equivalently 2 
 2 
 2 = 4 � 2 � 2

(c) Let us restrict ourselves to two quark avours: u and d. We introduce a new
quantum number, calledisospin in complete analogy with spin, and we refer to
the u quark as the isospin +1/2 component and thed quark to the isospin -1/2
component (or u= isospin \up" and d=isospin \down"). What are the possible
isospin values for the resulting baryon?

(d) The � ++ particle is in the lowest angular momentum state(L = 0) and has
spin J3 = 3=2 and isospinI 3 = 3=2. The overall wavefunction (L) space-part,
S) spin-part, I) isospin-part) must be anti-symmetric under exchange of any of
the quarks. The symmetry of the space, spin and isospin part has a consequence
for the required symmetry of the Color part of the wave function. Write down
the color part of the wave-function taking into account thatthe particle is color
neutral.

(e) In the case that we include thes quark the avour part of the wave function
becomes:3 
 3 
 3 = 10 � 8 � 8 � 1.
In the case that we include all 6 quarks it becomes:6 
 6 
 6. However, this is
not a good symmetry. Why not?
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1.5 The Standard Model

The fundamental constituents of matter and the force carriers in the Standard Model
can be represented as follows:

The fundamental particles:
charge Quarks

2
3

u (up) c (charm) t (top)
1.5{4 MeV 1.15{1:35 GeV (174:3 � 5:1) GeV

� 1
3

d (down) s (strange) b (bottom)
4{8 MeV 80{130 MeV 4.1{4:4 GeV

charge Leptons

0 � e (e neutrino) � � (� neutrino) � � (� neutrino)
< 3 eV < 0:19 MeV < 18:2 MeV

� 1 e (electron) � (muon) � (tau)
0:511 MeV 106 MeV 1:78 GeV

The forces, their mediating bosons and their relative strength:
Force Boson Relative strength
Strong g (8 gluons) � s � O (1)

Electromagnetic  (photon) � � O (10� 2)
Weak Z 0,W � (weak bosons) � W � O (10� 6)

Some de�nitions:

hadron (greek: strong) particle that feels the strong interaction
lepton (greek: light, weak) particle that feels only weak interaction
baryon (greek: heavy) particle consisting of three quarks
meson(greek: middle) particle consisting of a quark and an anti-quark
pentaquark a hypothetical particle consisting of 4 quarks and an anti-quark
fermion half-integer spin particle
boson integer spin particle
gauge-boson force carrier as predicted from local gauge invariance

In the Standard Model forces originate from a mechanism called local gauge invari-
ance, which wil be discussed later on in the course. The strong force (or color force) is
mediated by gluons, the weak force by intermediate vector bosons, and the electromag-
netic force by photons. The fundamental diagrams are represented below.
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Figure 1.11: Feynman diagrams of fundamental lowest order perturbation theory pro-
cesses in a: electromagnetic, b: weak and c: strong interaction.

There is an important di�erence between the electromagnetic force on one hand, and
the weak and strong force on the other hand. The photon does notcarry charge and,
therefore, does not interact with itself. The gluons, however, carry color and do interact
amongst each other. Also, the weak vector bosons carry weak isospinand undergo a
self coupling.

The strength of an interaction is determined by the coupling constant as well as the
mass of the vector boson. Contrary to its name the couplings arenot constant, but
vary as a function of energy. At a momentum transfer of 1015 GeV the couplings of
electromagnetic, weak and strong interaction all have the same value. In the quest of
uni�cation it is often assumed that the three forces unify to a grand uni�cation force at
this energy.

Due to the self coupling of the force carriers the running of the coupling constants
of the weak and strong interaction are opposite to that of electromagnetism. Electro-
magnetism becomes weaker at low momentum (i.e. at large distance), the weak and the
strong force become stronger at low momentum or large distance.The strong interac-
tion coupling even diverges at momenta less than a few 100 MeV (the perturbative QCD
description breaks down). This leads to con�nement: the existence of colored objects
(i.e. objects with net strong charge) is forbidden.

Finally, the Standard Model includes a, not yet observed, scalar Higgs boson, which
provides mass to the vector bosons and fermions in the Brout-Englert-Higgs mechanism.

Figure 1.12: Running of the coupling constants and possible uni�cation point. On the
left: Standard Model. On the right: Supersymmetric StandardModel.
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Open Questions

� Does the Higgs in fact exist?

� Why are the masses of the particles what they are?

� Why are there 3 generations of fermions?

� Are quarks and leptons truly fundamental?

� Why is the charge of the electronexactlyopposite to that of the proton. Or: why
is the total charge of leptons and quarks exactly equal to 0?

� Is a neutrino its own anti-particle?

� Can all forces be described in a single theory (uni�cation)?

� Why is there no anti matter in the universe?

� What is the source of dark matter?

� What is the source of dark energy?
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Lecture 2

Wave Equations and Anti Particles

Introduction

In the course we develop a quantum mechanical framework to describe electromagnetic
scattering, in short Quantum Electrodynamics (QED). The way we build it up is that
we �rst derive a framework for non-relativistic scattering of spinless particles, which
we then extend to the relativistic case. Also we will start with thewave equations for
particles without spin, and address the spin 1/2 particles later on in the lectures (\the
Dirac equation').

What is a spinless particle? There are two ways that you can think of it: either as
charged mesons (e.g. pions or kaons) for which the strong interaction has been \switched
o�" or for electrons or muons for which the fact that they are spin-1/2 particles is
ignored. In short: it not a very realistic case.

2.1 Non Relativistic Wave Equations

If we start with the non relativistic relation between kinetic energy and momentum

E =
~p2

2m

and make the quantum mechanical substitution:

E ! i
@
@t

and ~p! � i ~r

then we end up with Schr•odinger's equation:

i
@
@t

 =
� 1
2m

r 2 

In electrodynamics we have the continuity equation (\Gauss law") which relates a
current to a change of charge:

~r � ~j = �
@�
@t

25
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wherej = the current density and � = the charge density.
This is a rather general law stat can be stated in words as: \The change of charge

in a given volume equals the current through the surrounding surface."
Can we make use of the continuity equation in quantum mechnics?Let us mul-

tiply the Schr•odinger equation from the left by  � and do the same for the complex
conjugates:

 � i
@ 
@t

=  �
� � 1

2m

�

r 2 

 � i
@ �

@t
=  

� � 1
2m

�

r 2 �

�
@
@t

( �  )
| {z }

�

= � ~r �
� i
2m

�
 ~r  � �  � ~r  

� �

| {z }
~j

In the result we can recognize again the continuity equation if we interpret the density
and current as indicated.

Example: Consider a solution to the Schr•odinger equation fora free particle:

 = N ei (~p~x� Et ) ( show it is a solution )

then:

� =  �  = jN j2

~j =
i

2m

�
 ~r  � �  � ~r  

�
=

jN j2

m
~p

Exercise 4:
Derive the expressions for� and ~j in the above example explicitly starting from the
Schr•odinger equation and its complex conjugate.

2.2 Relativistic Wave Equations

If we start with the relativistic equation:

E 2 = ~p2 + m2

and again make the substitution:

E ! i
@
@t

and ~p! � i ~r

then we end up with the Klein Gordon equation for a wavefunction � :

�
@2

@t2
� = �r 2� + m2 �
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or in 4-vector notation:
�
2 + m2

�
� (x) = 0

or :
�
@� @� + m2

�
� (x) = 0

A solution is again provided by plane waves:

� (x) = N e� ip � x �
with eigenvalues E 2 = ~p2 + m2

In the same way as before we can de�ne a current density by multiplying the K.G.
equation for � from the left with � � and doing the same to the complex conjugate
equation:

� i� �

 

�
@2�
@t2

!

= � i� �
�
�r 2� + m2 �

�

i�

 

�
@2� �

@t2

!

= i�
�
�r 2� � + m2� �

�

+
@
@t

i

 

� � @�
@t

� �
@��

@t

!

| {z }
�

= ~r �
h
i

�
� � ~r � � � ~r � �

�i

| {z }
� ~j

where we can recognize again the continuity equation. In 4-vector notation it becomes:

j � =
�
�; ~j

�
= i [� � (@� � ) � (@� � � ) � ]

@� j � = 0

Let us substitute the plane wave solutions� = N e� ipx then:

� = 2 jN j2 E
~j = 2 jN j2 ~p

or : ! j � = 2 jN j2 p�

Exercise 5:
Derive the expressions for� and~j explicitly starting from the Klein Gordon equation.

But now we really have an interpretation problem! There aretwo solutions: E = �
p

~p2 + m2.
The solution with E < 0 is di�cult to interpret as it means � < 0.

Exercise 6:
The relativitic energy-momentum relation can be written as:

E =
q

~p2 + m2 (2.1)

This is linear in E = @=@t, but we don't know what to do with the square root of the
momentum operator. However, for small~p we can expand the expression in powers of
~p. Do this up and including to order ~p2 and write down the resulting wave equation.
Determine the probability density and the current density.
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Figure 2.1: Dirac's interpretation of negative energy solutions: \holes"

2.3 Interpretation of negative energy solutions

2.3.1 Dirac's interpretation

In 1927 Dirac o�ered a new interpretation of the negative energy states. He introduced
a new wave equation which in fact waslinear in time and space, which will be discussed
later on in the course. It turned out to automatically describeparticles with spin 1/2.
At this point in the course we consider spinless particles. Statedotherwise: the wave
function  or � is a scalar quantity as there is no individual spin \up" or spin \down"
component.

According to the Pauli exclusion principle, Dirac knew that there can not be two
identical particles in the same quantum state. Dirac's picture of the vacuum and of a
particle are schematically represented in Fig. 2.1.

The plot shows all the avaliable energy levels of an electron.It's lowest absolute
energy level is given byjE j = m. Dirac imagined the vacuum to contain an in�nite
number of states with negative energy which are all occupied.Since an electron is
a spin-1/2 particle each state can only contain one spin \up" electron and one spin-
"down" electron. All the negative energy levels are �lled. Such a vacuum (\sea") is not
detectable since the electrons in it cannot interact, i.e. goto another state.

If energy is added to the system, an electron can be kicked out ofthe sea. It now
gets a positive energy withE > m . This means this electron becomes visible as it can
now interact. At the same time a \hole" in the sea has appeared. This hole can be
interpreted as a positive charge at that position. Dirac's hope was that he could describe
the proton in such a way.
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2.3.2 Pauli-Weisskopf Interpretation

Pauli and Weiskopf proposed a simpler scheme in 1934 in which theyre-interpreted the
opposite sign solutions of the Klein Gordon equation as the opposite charges:
� = electric charge density
~j = electric current density

and the � and + solutions indicate the electron and positron. The positron then had
of course the mass as the electron. The positron was discovered in1931 by Anderson.

2.3.3 Feynman-St•uckelberg Interpretation

The current density for a particle with charge� e and momentum (E; ~p) is:

j � (� e) = � 2e jN j2 p� = � 2e jN j2 (E; ~p)

The current density for a particle with charge +e and momentum (E; ~p) is:

j � (+ e) = +2 e jN j2 p� = � 2e jN j2 (� E; � ~p)

This means that the positive energy solution for a positronis the negative energy
solution for an electron.

Note that indeed the wave functionNeip � x �
= Neip � x �

is invariant under: p� ! � p�

and x � ! � x � . So the wave functions that describe particles also describe anti-particles.
The negative energy solutions give particles travelling backwards in time. They are the
same as the positive energy solutions of anti-particles travelling forward in time. This
is indicated in Fig. 2.2.

e e

E>0 E<0

+ -

t

Figure 2.2: A positron travelling forward in time is an electron travelling backwards in
time.

As a consequence of the Feynman-St•uckelberg interpretationthe process of an ab-
sorption of a positron with energy� E is the same as the emission of an electron with
energyE (see Fig.2.3). In the calculations with Feynman diagrams we have made the
convention that all scattering processes are calculated in terms ofparticles and not an-
tiparticles. As an example, the process of an incoming positron scattering o� a potential
will be calculated as that of an electron travelling back in time (see Fig. 2.4).

Let us consider the scattering of an electron in a potential. The probability of a
process is calculated in perturbation theory in terms of basicscattering processes (i.e.
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(+E,p)

emission

absorption

-e

+e

time

(-E,-p)

Figure 2.3: There is no di�erence between the process of an absorption of a positron
with p� = ( � E; � ~p) and the emission of an electron withp� = ( e; ~p).

+

time x

e
e-

Figure 2.4: In terms of the charge current densityj �
+( E;~p)(+ e) � j �

� (E;~p)(� e)
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Feynman diagrams). In Fig. 2.5 the �rst and second order scattering of the electron is
illustrated. To �rst order a single photon carries the interaction between the electron and
the potential. When the calculation is extended to second order the electron interacts
twice with the �eld. It is interesting to note that this scatter ing can occur in two
time orderings as indicated in the �gure. Note that the observable path of the electron
before and after the scattering process is identical in the twoprocesses. Because of our
anti-particle interpretation, the second picture is also possible. It can be viewed in two
ways:

� The electron scatters at timet2 runs back in time and scatters att1.

� First at time t1 \spontaneously" an e� e+ pair is created from the vacuum. Later-
on, at time t2, the produced positron annihilates with the incoming electron, while
the produced electron emerges from the scattering process.

In quantum mechanics both time ordered processes (the left andthe right picture)
must be included in the calculation of the cross section. We realize that the vacuum
has become a complex environment since particle pairs can spontaneously emerge from
it and dissolve into it!

2

x

e-
time

e-

x
x

e- e-

-e

x
xt

t1
2

t
t
1

Figure 2.5: First and second order scattering.
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2.4 The Dirac Deltafunction

The de�nition of the Dirac delta function is:

� (x) =

(
0 for x 6= 0
1 for x = 0

0

surface = 1

infinite

in such a way that: Z 1

�1
� (x) dx = 1

In that case one has:f (x) � (x) = f (0) � (x) for any function f . Therefore:
Z 1

�1
f (x) � (x) dx =

Z 1

�1
f (0) � (x) dx = f (0)

Z 1

�1
� (x) dx = f (0)

Exercise 7:
The consequences of the de�nition of the Dirac Delta functionare the following:

(a) Prove that:

� (kx) =
1

jkj
� (x)

(b) Prove that:

� (g(x)) =
nX

i =1

1
jg0(x i )j

� (x � x i )

where the sumi runs over the 0-points ofg(x), i.e.:g(x i ) = 0 :
Hint: make a Taylor expansion ofg around the 0-points.

Exercise 8
Characteristics of the Dirac delta function:

(a) Calculate
R3

0 ln(1 + x) � (� � x) dx

(b) Calculate
R3

0 (2x2 + 7x + 4) � (x � 1) dx

(c) Calculate
R3

0 ln(x3) � (x=e� 1) dx

(d) Simplify �
� q

(5x � 1) � x � 1
�

(e) Simplify � (sinx) and draw the function



Lecture 3

The Electromagnetic Field

3.1 Maxwell Equations

As we eventually want to calculate processes in QED, let us look at the electromagnetic
�eld and the photon. The Maxwell equations in vacuum are:

(1) ~r � ~E = � Gauss law

(2) ~r � ~B = 0 No magnetic poles

(3) ~r � ~E +
@~B
@t

= 0 Faraday0s law of induction

(4) ~r � ~B �
@~E
@t

= ~j Relate B �eld to a current

From the �rst and the fourth equation we can indeed derive the continuity equation:

~r � ~j = �
@�
@t

In scattering with particles we want to work relativistic, so it would be suitable if
we could formulate Maxwell equations in a covariant way; i.e. in a manifestly Lorentz
invariant way.

To do this we introduce a mathematical tool: the potentialA � =
�
V; ~A

�
. We note

at this point that the �elds ~E; ~B are physical, while the potential isnot. Remember
that the following identities are valid for any vector �eld ~A and scalar �eld V:

~r �
�

~r V
�

= 0 ( rotation of gradient is 0 )

~r �
�

~r � ~A
�

= 0 ( divergence of a rotation is 0 )

We choosethe potential in such a way that two Maxwell equations are automatically
full�lled:

1. ~B = ~r � ~A
Then, automatically it follows that: ~r � ~B = 0.

33
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2. ~E = � @~A
@t � ~r V

Then, automatically it follows that: ~r � ~E = �
@(~r� ~A)

@t � 0 = � @~B
@t.

So, by a suitable de�tion of how the potential A � is related to the physical �elds,
automatically Maxwell equations (2) and (3) are full�lled.

Exercise 9:

(a) Show that Maxwell's equations can be written as:

@� @� A � � @� @� A � = j �

Hint: Derive the expressions for� and ~j explicitly and note that ~r �
�

~r � ~A
�

=

�r 2 ~A + ~r
�

~r � ~A
�

(b) It can be made even more compact by introducing the tensor:F �� � @� A � � @� A � .
Show that with this de�nition Maxwell's equations reduce to:

@� F �� = j �

Intermezzo: 4-vector notation

Assume that we have a contravariant vector:

A � =
�
A0; A1; A2; A3

�
=

�
A0; ~A

�

then the covariant vector is obtained as:

A � = ( A0; A1; A2; A3) = g�� A � =
�
A0; � A1; � A2 � A3

�
=

�
A0; � ~A

�

since we use the metric sensor:

g�� = g�� =

0

B
B
B
@

1 0 0 0
0 � 1 0 0
0 0 � 1 0
0 0 0 � 1

1

C
C
C
A

There is one exception to this:@� � @
@x� . For the derivative 4-vector we then �nd:

@� =

 
@
@t

; ~r

!

@� =

 
@
@t

; � ~r

!

which is opposite to the contravariant and covariant behaviour of a usual 4-vectorA �

de�ned above.
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3.2 Gauge Invariance

Since we have introduced the potentialA � as a mathematical tool rather than as a
physical �eld we can chooseany A � potential as long as the~E and ~B �elds don't change.
After re-examining the equations that de�neA we realize that there is a freedom to make
so-caled gauge transformations which do not a�ect the physical�elds ~E and ~B:

A � ! A0� = A � + @� � or

A � ! A0
� = A � + @� � for any scalar �eld �

In terms of the VoltageV and vectors potential ~A we have:

V 0 = V +
@�
@t

~A0 = ~A � ~r �

Exercise 10:
Show explicitly that in such gauge transformations the~E and ~B �elds do not change:

~B 0 = ~r � ~A0 = ::: = ~B

~E 0 = �
@~A0

@t
� ~r V 0 = ::: = ~E

The laws of physics are gauge invariant. This implies that we can choose any gauge
to calculate physics quantities. It is most elegant if we can perform all calculations in
a way that is manifestly gauge invariant. However, sometimes wechoose a particular
gauge in order to make the expressions in calculations simpler.

A gauge choice that is often made is called theLorentz condition, in which we choose
A � according to:

@� A � = 0

Exercise 11:
Show that it is always possible to de�ne aA � �eld according to the Lorentz gauge. To
do this assume that for a givenA � �eld one has: @� A � 6= 0. Give then the equation
for the gauge �eld � by which that A � �eld must be transformed to obtain the Lorentz
gauge.

In the Lorentz gauge the Maxwell equations simplify further:

@� @� A � � @� @� A � = j � now becomes :

@� @� A � = j �
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However,A � still has some freedom since we have �xed:@� (@� � ), but we have not
yet �xed @� � ! In other words a gauge transformation of the form:

A � ! A0� = A � + @� � with : 2 � = @� @� � = 0

is still allowed within the Lorentz gauge@� A � = 0. However, we can in addition impose
the Coulomb condition:

A0 = 0 or equivalently : ~r � ~A = 0

At the same time we realize, however, that this is not elegant as we give the \0-
th component" or \time-component" of the 4-vector a special treatment. Therefore the
choice of this gauge is not Lorentz invariant. This means that one has to chose a di�erent
gauge condition if one goes from one reference frame to a di�erent reference frame. This
is allowed since the choice of the gauge is irrelevant for the physics observables, but it
sometimes considered \not elegant".

3.3 The photon

Let us turn to the wave function of the photon. We start with Maxwell's equation and
consider the case in vacuum:

2 A � = j � ! vacuum : j � = 0 ! 2 A � = 0

Immediately we recognize in each component the Klein Gordonequation of a quantum
mechanical particle with massm = 0: ( 2 + m2) � (x) = 0 (see previous Lecture). This
particle is the photon.

The plane wave solutions of the massless K.-G. equation are:

A � (x) = N" � (~p) e� ip � x �
with : p2 = p� p� = 0

We are describing avector �eld A � since the �eld has a Lorentz index� . The vector
" � (~p) is the polarization vector: it has 4 components. Does this mean that the photon
has 4 independent polarizations (degrees of freedom)?

Let us take a look at the gauge conditions and we see that there are some restrictions:

� Lorentz condition:
@� A � = 0 ) p� " � = 0

This reduces the number of independent components to three.For the gauge �eld
this implies 2 � = 0 and we see that we can choose the gauge �eld as:

� = iae� ip � x �

@� � = ap� e� ip � x �
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wherea is a constant. Thus the gauge transformation looks like

A � ! A0� = N
�
" � e� ip � x �

+ ap� e� ip � xu
�

or, in terms of the polarization vector:

" � ! "0� = " � + ap�

Therefore, di�erent polarization vectors which di�er by a multiple of p� describe
the same physical photon.

� Coulomb condition:

We choose the zero-th component of the gauge �eld such that:"0 = 0. Then the
Lorentz condition reduces to:

(
A0 = 0

~r � ~A = 0
)

(
"0 = 0

~" � ~p= 0

So, instead of 4 degrees of freedom (" � ) we now only have 2 independent polarization
vectors which are perpendicular to the three-momentum of the photon. If the photon
travels along thez-axis the polarization degrees of freedom can be:

� transverse polarizations:

~"1 = (1 ; 0; 0) ~"2 = (0 ; 1; 0)

� circular polarizations:

~"+ =
� ~"1 � i~" 2p

2
~"� =

+ ~"1 � i~" 2p
2

Exercise 12
Show that the circular polarization vectors"+ and " � transform under a rotation of
angle � around the z-axis as:

~"+ ! ~"0
+ = e� i� ~"+

~"� ! ~"0
� = ei� ~"�

or ~"0
i = e� im� ~"i

Hence~"+ and ~"� describe a photon of helicity +1 and -1 respectively.

Since the photon is a spin-1 particle we would expectmz = � 1; 0; +1. How about
helicity 0? The transversality equation~" � ~p= 0 arises due to the fact that the photon is
massless. For massive vector �elds (or virtual photon �elds!) this component is allowed:
~"==~p.
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3.4 The Bohm Aharanov E�ect

Later on in the course we will see that the presence of a vector �eld ~A a�ects the phase
of a wave function of the particle. The phase factor is a�ectedby the presence of the
�eld in the following way:

 0 = ei q
�h � (~r;t )  

whereq is the charge of the particle, �h is Plancks constant, and� is given by:

� (~r; t) =
Z

r
d~r0 � A(~r0; t)

Let us now go back to the famous two-slit experiment of Feynmanin which he
considers the interference between two possible electron trajectories. From quantum
mechanics we know that the intensity at a detection plate positioned behind the two
slits shows an interference pattern depending on the relativephases of the wave functions
 1 and  2 that travel di�erent paths. For a beautiful description of thi s see chapter 1 of
the \Feynman Lectures on Physics" volume 3 (\2-slit experiment") and pages 15-8 to
15-14 in volume 2 (\Bohm-Aharanov"). The idea is schematically depicted in Fig. 3.1.

2

slits

detector

Intensity

coilsource y
1

y

Figure 3.1: The schematical setup of an experiment that investigates the e�ect of the
presence of an A �eld on the phase factor of the electron wave functions.

In case a �eld ~A is present the phases of the wave functions are a�ected, such that
the wave function on the detector is:

 =  1 eiq� 1 (~r;t ) +  2 eiq� 2 (~r;t ) =
�
 1 eiq(� 1 � � 2 ) +  2

�
eiq� 2

We note that the interference between the two amplitudes depends on the relative phase:

� 1 � � 2 =
Z

r 1

d~r0
1A1 �

Z

r 2

d~r0
2A2 =

I
d~r0 � ~A(~r0; t)

=
Z

S

~r � ~A(~r0; t) � d~S =
Z

S

~B � d~S = �
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where we have used Stokes theorem to relate the integral around a closed loop to the
magnetic ux through the surface. In this way the presence of a magnetic �eld can
a�ect, (i.e. shift) the interference pattern on the screen.

Let us now consider the case that a very long and thin solenoid is positioned in the
setup of the two-slit experiment. Inside the solenoid the B-�eldis homogeneous and
outside it is B = 0 (or su�ciently small), see Fig. 3.2. However, from electrodynamics
we recall the ~A �eld is not zero outside the coil. There is a lot of~A circulation around
the thin coil. The electrons in the experiment pass through this ~A �eld which quantum
mechanically a�ects the phase of their wave function and therefor also the interference
pattern on the detector. On the other hand, there is noB �eld in the region, so
classically there is no e�ect. Experimentally it has been veri�ed (in a technically di�cult
experiment) that the interference pattern will indeed shift.

A

B

Figure 3.2: Magnetic �eld and vector potential of a long solenoid.

Discussion:
We have introduced the vector potential as a mathematical tool to write Maxwells
equations in a Lorentz covariant form. In this formulation we noticed that the A-�eld
has some arbitraryness due to gauge invariance. Quantummechanically we observe,
however, that theA �eld is not just a mathematical tool, but gives a more fundamental
description of \forces". The aspect of gauge invariance seems anunwanted (\not nice" )
aspect now, but later on it will turn out to be a fundamental concept in our description
of interactions.
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Exercise 13 The delta function

(a) Show that
d3p

(2� )32E
(3.1)

is Lorentz invariant (d3p = dpxdpydpz). Do this by showing that

Z
M (p) 2d4p � (p2 � m2) � (p0) =

Z
M (~p)

d3p
E

: (3.2)

The 4-vectorp is (E; px ; py; pz), and M (p) is a Lorentzinvariant function of p and
� (p0) is the Heavyside function.

(b) The delta-function can have many forms. One of them is:

� (x) = lim
� !1

1
�

sin2 �x
�x 2

(3.3)

Make this plausible by sketching the functionsin2(�x )=(��x 2) for two relevant
values of� .

(c) Show that another (important!) representation of the Dirac delta function is given
by

� (x) =
1

2�

Z + 1

�1
eikx dk

To do this use the de�nition of Fourier transforms:

f (x) =
1

2�

Z + 1

�1
g(k) eikx dk

g(k) =
Z + 1

�1
f (x) e� ikx dx



Lecture 4

Perturbation Theory and Fermi's
Golden Rule

4.1 Non Relativistic Perturbation Theory

Let us start to examine a scattering process:A + B ! C + D. As an example we
take in mind the case where two electrons scatter in an electromagnetic potential A � as
schematically depicted in Fig. 4.1

m

B

e

C

e- -

e

e

-

-

A

D

i
i

f

f

A

Figure 4.1: Scattering of two electrons in a electromagnetic potential.

The ingredients to calculate the counting rate for a scattering process:A+ B ! C+ D
are:

1. The transition probability Wf i to go from an initial state 00i 00to a �nal state 00f 00.

2. The experimental conditions called the \ux " factor. It includes both the beam
intensity and the target density.

3. The Lorentz invariant \phase space"factor � (also referred to as dLIPS). It takes
care of the fact that experiments usually can not observe individual states but
integrate over a number of (allmost identical) states.

41
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The formula for the calculation of a (di�erential) cross section is:

d� =
Wf i

Flux
�

Note that the \real" physics, (i.e. the Feynman diagrams) is included in the transition
probability Wf i . The ux and the phase space factors are the necessary \bookkeeping"
needed to compare the physics theory with a realistic experiment. (The calculation of
the phase space can in fact be rather involved.)

4.1.1 The Transition Probability

In order to calculate the transition probability we use the framework of non-relativistic
perturbation theory. In the end we will see how we can use the result in a Lorentz
covariant way and apply it to relativistic scattering.

Consider the scattering of a particle in a potential as depicted in Fig. 4.2 Assume
that beforethe interaction takes place, as well asafter, the system is described by the
non-relativistic Schr•odinger equation:

i
@ 
@t

= H0  

where H0 is the unperturbed Hamiltonian, which does not have a time dependence.
Solutions of this equation can be written in the as:

 m = � m (~x) e� iE m t

with eigenvaluesEm .
The � m form a complete set orthogonal eigenfunctions of:H0� m = Em � m , so:

Z
� �

m (~x) � n (~x) d3x = � mn

t=0 

H

V(x,t)y i

y f

0

0H
t=T/2t=-T/2

Figure 4.2: Scattering of a particle in a potential.
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Assume that at t = 0 a perturbation occurs such that the system is described by:

i
@ 
@t

= ( H0 + V (~x; t))  (4.1)

The solutions can generally be written as:

 =
1X

n=0

an (t) � n (~x) e� iE n t (4.2)

wherean (t) is the co•e�cient to �nd the system in state \ n".
To determine these co•e�cients an (t) substitute 4.2 in 4.1:

i
1X

n=0

dan (t)
dt

� n (~x) e� iE n t + i
1X

n=0

(� i ) En an (t) � n (~x) e� iE n t =

1X

n=0

En an (t) � n (~x) e� iE n t +
1X

n=0

V(~x; t) an (t) � n (~x) e� iE n t

and the two terms proportional to En cancel.
Multiply the resulting equation from the left with:  �

f = � �
f (~x) eiE f t and integrate

over volumed3x to obtain:

i
1X

n=0

dan (t)
dt

Z
d3x � �

f (~x) � n (~x)
| {z }

� fn

e� i(En � E f )t =

1X

n=0

an (t)
Z

d3x � �
f (~x) V(~x; t) � n (~x) e� i(En � E f )t

Next we use the orthonormality relation:
Z

d3x � �
m (~x) � n (~x) = � mn

so that we �nd:

daf (t)
dt

= � i
1X

n=0

an (t)
Z

d3x � �
f (~x) V(~x; t) � n (~x) e� i(En � E f )t

We will assume two simpli�cations:

� We prepare the incoming wave in a single state: The incoming wave is:  i =
� i (~x) e� iE i t . In other words: ai (�1 ) = 1 and an (�1 ) = 0 for ( n 6= i ).

� We will assume that the inital condition is true during the time that the pertur-
bation happens! This implies that we work with aweakinteraction. In fact this is

the lowest order in perturbation theory in which we replace
1X

n=0

by just one term:

n = i . It means that af (t) << 1 is assumed at all times.
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Then we get:

daf (t)
dt

= � i
Z

d3x � �
f (~x) V(~x; t) � i (~x) e� i(E i � E f )t

Our aim is to determineaf (t):

af (t0) =
Z t0

� T=2

daf (t)
dt

dt = � i
Z t0

� T=2
dt

Z
d3x

h
� f (~x) e� iE f t

i �
V(~x; t)

h
� i (~x) e� iE i t

i

We de�ne the transition amplitude Tf i as the amplitude to go from statei �nal state f
at the end of the interaction:

Tf i � af (T=2) = � i
Z T=2

� T=2
dt

Z
d3x � �

f (~x; t) V(~x; t) � i (~x; t)

Finally we take the limit: T ! 1 . Then we can write the expression in 4-vector
notation:

Tf i = � i
Z

d4x � �
f (x) V(x) � i (x)

Note:
The expression forTf i has a manifest Lorentzinvariant form. It is true for each Lorentz
frame. Although we started with Schr•odinger's equation (i.e. non-relativistic) we will
always use it: also for relativistic frames.

1-st and 2-nd order perturbation

What is the meaning of the initial conditions: ai (t) = 1 ; an (t) = 0 ? It implies that the
potential can only makeone quantum perturbation from the initial state i to the �nal
state f . For example the perturbation: i ! n ! f is not included in this approximation
(it is a 2nd order perturbation).

If we want to improve the calculation to second order in perturbation theory we
replace the approximationan (t) = 0 by the �rst order result:

daf (t)
dt

= � i Vf i ei(E f � E i )t

+ ( � i )2

2

4
X

n6= i

Vni

Z t

� T=2
dt0ei (En � E i )t0

3

5 Vfn ei(E f � En )t

where we have assumed that the perturbation is time independent and introduced the
notation:

Vf i �
Z

d3x� �
f (~x) V(~x) � i (~x)

See the book of Halzen and Martin how to work out the second ordercalculation. A
graphical illustration of the �rst and second order perturbation is given in Fig. 4.3.
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V
fi

fn

ni
space

time

i

f

i

f
1-st order 2-nd order

V V

Figure 4.3: First and Second order approximation in scattering.

Can we interpret jTf i j2 as the probability that a particle has scattered from statei
to state f ? Consider the case where the perturbation is timein dependent. Then:

Tf i = � i Vf i

Z 1

�1
dt ei(E f � E i )t = � 2�i V f i � (E f � E i )

The � -function expresses energy conservation ini ! f . From the uncertainty princple
it can then be inferred that the transition between two exactly de�ned energy states
E i and E f must be in�nitely seperated in time. Therefore the quantity jTf i j2 is not a
meaningfull quantity. We de�ne instead the transition probability per unit time as:

Wf i = lim
T !1

jTf i j2

T

The calculation of the transition probability is non-trivial as it involves the square of a
� -function. A proper treatment is rather lengthy1 and involves the use of wave packets.
Instead we will apply a \trick". If we assume that the interaction occurs during a time
period T from t = � T=2 until t = + T=2 we can write:

jWf i j = lim
T !1

1
T

jVf i j2
Z 1

�1
dt ei(E f � E i )t �

Z T=2

� T=2
dt0ei(E f � E i )t0

= jVf i j2 2�� (E f � E i ) � lim
T !1

1
T

Z T=2

� T=2
dt0

| {z }
T

The � -function in the �rst integral implies that there is only cont ribution for E f equal
to E i in the second integral.

Then we note that the arbitrary chosen time periodT drops out of the formula such
that the transition probability per unit time becomes:

Wf i = lim
T !1

jTf i j2

T
= 2� jVf i j2 � (E f � E i )

This is the transition probability for a given initial state into a speci�c �nal state.

1see e.g. the book by K.Gottfried, \Quantum Mechanics" (1966), Volume 1, sections 12, 56.



46 Lecture 4. Perturbation Theory and Fermi's Golden Rule

In particle physics experiments we typically have:

� Well prepared initial states

� An integral over �nal states that are reached:� (E f )dEf .

Finally we arrive at Fermi's Golden rule:

Wf i = 2�
Z

dEf � (E f ) jVf i j2 � (E f � E i )

= 2� jVf i j2 � (E i )

Exercise 14
Assume that there is a constant perturbation potential betweent = � T=2 and t = T=2.
(a) Write down the expression forTf i at time T=2 and do the integral overt.
(b) Write down the expression forWf i . Show that this expression corresponds to the
one in the lecture in the limit that T ! 1 .
(c) Assume that density for �nal states � (E f ) is a constant and perform the integral
over all �nal states dEf . Compare it to the expression of Fermi's Golden rule.
Hint:

R+ 1
�1

sin 2x
x2 dx = �

4.1.2 Normalisation of the Wave Function

Let us assume that we are working with solutions of the Klein-Gordon equation:

� = N e� ipx

We normalise the wave function in a given volumeV to 1:

Z

V
� � � dV = 1 ) N =

1
p

V

The probability density for a Klein Gordon wave is given by (seeLecture 2):

� = 2 jN j2 E ) � =
2E
V

In words: in a given volumeV there are 2E particles. The fact that � is proportional to
E is needed to compensate for the Lorentz contraction of the volume elementd3x such
that � d 3x remains constant. The volumeV is arbitrary and in the end it must drop
out of any calculation of a scattering process.
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beam

target

A B

Figure 4.4: A beam incident on a target.

4.1.3 The Flux Factor

The ux factor or the initial ux corresponds to the amount of particles that pass each
other per unit area and per unit time. This is easiest to considerin the lab frame.
Consider the case that a beam of particles (A) is shot on a target (B), see Fig. 4.4

The number of beam particles that pass through unit area per unit time is given by
j~vA j nA . The number of target particles per unit volume isnB . The density of particles
n is given byn = � = 2E

V such that:

Flux = j~vA j na nb = j~vA j
2EA

V
2EB

V

Exercise 15
In order to provide a general, Lorentz invariant expression for the ux factor replace ~vA

by ~vA � ~vB and show using:~vA = ~PA =EA and ~vB = ~PB =EB , that:

Flux = 4
q

(pA � pB )2 � m2
A m2

B = V2

4.1.4 The Phase Space Factor

How many quantum states can be put into a given volumeV? Assume the volume is
rectangular with sidesL x , L y, L z. A particle with momentum p has a \size" given by:
� = 2�=p . Using periodic boundary conditions to ensure no net particle ow out of the
volume we see that the number of states with a momentum between~p = (0 ; 0; 0) and
~p= ( px ; py; pz) is

N = nx ny nz =
L x

� x

L y

� y

L z

� z
=

L xpx

2�
L ypy

2�
L zpz

2�
=

V

(2� )3 px py pz
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Figure 4.5: Schematic calculation of the number of states in abox of volumeV.

An alternative view is given by Burcham & Jobes on page 305. Thenumber of �nal
states is given by the total size of the available phase space for the �nal state divided
by the volume of the elementary cell:h3 (within an elementary cell states cannot be
distinguished):

N =
1
h3

Z
dx dy dz dpx dpy dpz =

V

(2� )3 �h3

Z
dpx dpy dpz =

V

(2� )3 px py pz

As a consequence, the number of states with momentum between~p and ~p+ d~p(i.e.
between (px ; py; pz) and (px + dpx ; py + dpy; pz + dpz) ) is:

dN =
V

(2� )3 dpx dpy dpz

The wave functions were normalized according to
R

V �dV = 2E, therefore the number
of states per particle is:

# states=particle =
V

(2� )3

d3p
2E

For a process in the formA + B ! C + D + E + :::: with N �nal state particles the
Lorentz invariant phase space factor is:

d� = dLIPS =
NY

i =1

V

(2� )3

d3pi

2E i
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4.1.5 Summary

Finally we arrive at the formula to calculate a cross section for the process

A i + B i ! Cf + D f + :::

d� f i =
1

ux
Wf i d�

Wf i = lim
T !1

jTf i j2

T

Tf i = � i
Z

d4x  �
f (x) V(x)  i (x)

d� =
NY

i =1

V

(2� )3

d3~pi

2E i

ux = 4
q

(pA � pB )2 � m2
A m2

B = V2

Exercise 16
Show that the cross section does not depend on the arbitrary volume V.

Exercise 17
Why is the phase space factor indeed Lorentz invariant? (Hint: Just refer to a previous
exercise.)
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4.2 Extension to Relativistic Scattering

The transition amplitude of the scattering processA + B ! C + D, for incoming and
outgoing plane waves� = Ne� ipx takes the form:

Tf i = � i N A NB NCND (2� )4 � (pA + pB � pC � pD ) M

whereM is the so-calledMatrix element and the delta function takes care of the energy
and momentum conservation in the process.

To �nd the transition probability we square this expression:

jTf i j2 = jNA NB NCND j2 jMj 2
Z

d4x e� i (pA + pB � pC � pD )x �
Z

d4x0e� i (pA + pB � pC � pD )x0

= jNA NB NCND j2 jMj 2 (2� )4 � 4(pA + pB � pC � pD ) � lim
T;V !1

Z

T V
d4x

= jNA NB NCND j2 jMj 2 (2� )4 � 4(pA + pB � pC � pD ) � lim
T;V !1

TV

This gives for the transition probability per unit time and volume:

Wf i = lim
T;V !1

jTf i j2

TV
= jNA NB NCND j2 jMj 2 (2� )4 � (pA + pB � pC � pD )

Indeed we see that the delta funtion provides conservation of energy and momentum.

The cross section is again given by2:

d� =
Wf i

Flux
� 2

The phase space factor is:

� 2 =
V d3pC

(2� )3 � 2EC

V d3pD

(2� )3 � 2ED

and the Flux factor is:

Flux = 4
q

(pA � pB )2 � m2
A m2

B = V2

Taking it all together with N = 1
p

V:

d� =
1

V 4
jMj 2 (2� )4� 4 (pA + pB � pC � pD )�

V 2

4
q

(pA � pB )2 � m2
A m2

B

�
V d3pC

(2� )3 2EC

V d3pD

(2� )3 2ED

In this formula the arbitrary volume factors V cancel again.
2Usually we will write this as:

d� =
jMj 2

Flux
d�

and absorb the delta function in the phase space factor.
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We �nally have for the cross section ofA + B ! C + D:

d� =
(2� )4 � 4 (pA + pB � pC � pD )

4
q

(pA � pB )2 � m2
A m2

B

� jMj 2 �
d3pC

(2� )3 2EC

d3pD

(2� )3 2ED

Similarly the formula for decayA ! C + D is:

d� =
(2� )4 � 4 (pA � pC � pD )

2EA
� jMj 2 �

d3pC

(2� )3 2EC

d3pD

(2� )3 2ED

Exercise 18 (See also H&M Ex. 4.2)
Calculate the two particle phase space in the interactionA + B ! C + D.

(a) Start with the expression:

� 2 =
Z

(2� )4 � 4 (pA + pB � pC � pD )
d3 ~pC

(2� )3 2EC

d3 ~pD

(2� )3 2ED

Do the integral overd3pD using the � function and show that we can write:

� 2 =
Z 1

(2� )2

p2
f dpf d

4ECED

� (EA + EB � EC � ED )

where we have made use spherical coordinates (i.e.:d3pC = jpC j2dpC d
 ) and of
pf � j pC j.

(b) In the C.M. system we can write:
p

s � W = EA + EB . Show that the expression
becomes (hint: calculatedW=dpf ):

� 2 =
Z 1

(2� )2

pf

4

� 1
EC + ED

�

dW d
 � (W � EC � ED )

So that we �nally get:

� 2 =
1

4� 2

pf

4
p

s
d


(c) Show that the ux factor in the center of mass is:

F = 4pi
p

s

and hence that the di�erential cross section for a2 ! 2 process in the center of
mass frame is given by:

d�
d


�
�
�
�
�
cm

=
1

64� 2s
pf

pi
jMj 2

For the decay rateA ! B + C one �nds (4pi
p

s ! 2EA = 2mA ):

d�
d


�
�
�
�
�
cm

=
1

32� 2m2
A

pf jMj 2
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Lecture 5

Electromagnetic Scattering of
Spinless Particles

Introduction

In this lecture we discuss electromagnetic scattering of spinles particles. First we de-
scribe an example of a charged particle scattering in an external electric �eld. Second
we derive the cross section for two particles that scatter in each-others �eld. We end
the lecture with a prescription how to treat antiparticles.

In classical mechanics the equations of motion can be derived using the variational
principle of Hamilton which states that the action integralI should be stationary under
arbitrary variations of the generalized coordinatesqi ; _qi : �I = 0, where:

I =
Z t1

t0
L (qi ; _qi )dt with L (qi ; _qi ) = T � V

This leads to the Euler Lagrange equations of motion (see Appendix A):

d
dt

@L
@_qi

=
@L
@qi

:

These may also be written in the form

_pi =
@L
@qi

with pi =
@L
@_qi

;

the generalized (or canonical) momentum.

5.1 Electrodynamics

How do we introduce electrodynamics in the wave equation of a system? The Hamilto-
nian of a free particle is:

H  =
~p2

2m
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In the presence of an electromagnetic �eld the equation of movement is:

~F =
d~p
dt

= q
�

~E + ~v � ~B
�

The Hamiltonian that leads to the desired equation of motion is(see e.g. Jackson):

H  =
� 1
2m

�
~p� q~A(~r; t)

� 2
+ q�( ~r; t)

�

 

This means that we replace the kinematic energy and momentumby the canonical
energy and momentum:E ! E � q� and ~p! ~p� q~A. In 4-vec notation:

p� ! p� � qA�

This is called minimal substitution contains the essential physics of electrodynamics.

Exercise 19
The Lagrangian for a charged particle moving in a electromagnetic �eld is:

L =
1
2

m~v2 + q~v� ~A(~r; t) � q�( ~r; t)

(a) Show that for a uniform magnetic �eld, we may take:

V = 0; ~A =
1
2

~B � ~r

If we choose thez-axis in the direction of ~B we have in cylindrical coordinates
(r; �; z ):

V = 0; Ar = 0; A � =
1
2

Br; A z = 0

Hint: In cylindrical co•ordinates the cross product is de�n ed as:

~r � ~A =
�

1
r

@Az
@�

�
@A�
@z

;
@Az
@z

�
@Az
@r

;
1
r

�
@(rA � )

@r
�

@Ar
@�

��

(b) Write down the Lagrangian in cylindrical co•ordinates

(c) Write out the Lagrangian equations:

d
dt

 
@L
@_q�

!

=
@L
@q�

in the cylindrical co•ordinates.

(d) Show that the equation of motion in terms of the coordinate _� yields (assume
r=constant):

_� = 0 or _� = �
qB
m

i.e. that it is in agreement with the law:

~F =
d~p
dt

= q
�

~E + ~v � ~B
�
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In quantum mechanics we make the replacementp� ! i@� , such that we have now:

@� ! @� + iqA �

This is the heart of quantum electrodynamics. As we will see later in the lectures
this substitution is mandatory in order make the theory quantum electrodynamics lo-
cally gauge invariant! (This was exactly the substitution in the example of the Bohm-
Aharanov e�ect where~p! ~p� q~A in the phase of the wave function.)

Start with the free particle Klein-Gordon equation:
�
@� @� + m2

�
� = 0

and substitute @� ! @� � ieA � for a particle with charge� e:

(@� � ieA � ) (@� � ieA � ) � + m2� = 0

which is of the form: �
@� @� + m2 + V(x)

�
� = 0

from which we derive for the perturbation potential:

V(x) = � ie (@� A � + A � @� ) � e2A2

Sincee2 is small (� = e2=4� = 1=137) we can neglect the second order term:e2A2 � 0.

f

H

V(x,t)i

f

0

0H

f

Figure 5.1: Scattering potential

From the previous lecture we take the general expression for the transition amplitude:

Tf i = � i
Z

d4x � �
f (x) V(x) � i (x)

= � i
Z

d4x � �
f (x) ( � ie) (A � @� + @� A � ) � i (x)

Use now partial integration to calculate:
Z

d4x � �
f @� (A � � i ) =

h
� �

f A � � i

i 1

�1| {z }
=0

�
Z

@�

�
� �

f

�
A � � i d4x
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note that at t = �1 and at t = + 1 : A � = 0.

We then get:

Tf i = � i
Z

� ie
h
� �

f (x) (@� � i (x)) �
�
@� � �

f (x)
�

� i (x)
i

| {z }
j f i

�

A � d4x

We had the de�nition of a Klein-Gordon current density:

j � = � ie [� � (@� � ) � (@� � � ) � ]

In complete analogy we now de�ne the \transition current density" to go from initial
state i to �nal state f :

j f i
� = � ie

h
� �

f (@� � i ) �
�
@� � �

f

�
� i

i

so that we arrive at:

Tf i = � i
Z

j f i
� A � d4x

This is the expression for the transition amplitude for going from free particle solutioni
to free particle solutionf in the presence of a perturbation caused by an electromagnetic
�eld.

If we substitute the free particle solutions of the unperturbedKlein-Gordon equation
in initial and �nal states we �nd for the transition current of sp inless particles:

� i = N i e� ip i x ; � �
f = N �

f eip f x

j f i
� = � eNi N �

f

�
pi

� + pf
�

�
ei(pf � pi )x

Verify that the conservation law @� j f i
� = 0 holds. From this equation it can be derived

that the charge is conserved in the interaction.

5.2 Scattering in an External Field

Consider the case that the external �eld is a static �eld of a point charge Z located in
the origin:

A � =
�
V; ~A

�
=

�
V;~0

�
with V(x) =

Ze
4� j~xj

The transition amplitude is:

Tf i = � i
Z

j �
f i A � d4x

= � i
Z

(� e) N i N �
f

�
p�

i + p�
f

�
A � ei(pf � pi )x d4x
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Insert that A � =
�
V;~0

�
and thus: p� A � = E V :

Tf i = i
Z

eNi N �
f (E i + E f ) V(x) ei(pf � pi )x d4x

Split the integral in a part over time and in a part over space and note that V(~x) is not
time dependent. Use also again:

R
ei(E f � E i )tdt = 2� � (E f � E i ) to �nd that:

Tf i = ieN i N �
f (E i + E f ) 2� � (E f � E i )

Z Ze
4� j~xj

e� i(~pf � ~pi )~x d3x

Now we make use of the Fourier transform:

1
j~qj2

=
Z

d3x ei~q~x 1
4� j~xj

Using this with ~q� (~pf � ~pi ) we obtain:

Tf i = ieN i N �
f (E i + E f ) 2� � (E f � E i )

Ze

j~pf � ~pi j
2

The next step is to calculate the transition probability:

Wf i = lim
T !1

jTf i j2

T

= lim
T !1

1
T

�
�
�N i N �

f

�
�
� [2� � (E f � E i )]

2

 
Ze2 (E i + E f )

j~pf � ~pi j
2

! 2

We apply again our \trick" (or calculate the integral explic itly and let T ! 1 ):

lim
T !1

[2� � (E f � E i )]
2 = 2 � � (E f � E i ) � lim

T !1

Z T=2

� T=2
dt ei (E f � E i )t

= 2 � � (E f � E i ) � lim
T !1

Z T=2

� T=2
ei 0t dt

| {z }
T

= lim
T !1

2� � (E f � E i ) � T

Putting this back into Wf i we obtain:

Wf i = lim
T !1

1
T

� T jN i N f j2 2� � (E f � E i )

 
Ze2 (E i + E f )

j~pf � ~pi j
2

! 2

The cross section is given by1:

d� =
Wf i

Flux
dLips

1Note that E = m0 and ~p = m0~v so that ~v = ~p=E.
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with :

Flux = ~v
2E i

V
=

~pi

E i

2E i

V
=

2~pi

V

dLips =
V

(2� )3

d3pf

2E f

Normalization : N =
1

p
V

!
Z

V
� � �dV = 1

In addition, from energy and momentum conservation we writeE = E i = E f and
p = j~pf j = j~pi j

Putting everything together:

d� =
1

V 2
2� � (E f � E i ) �

 
Ze2 (E i + E f )

j~pf � ~pi j
2

! 2

�
V

2j~pi j
V

(2� )3

d3pf

2E f

Note that the arbitrary volume V drops from the expression!
Use nowd3pf = p2

f dpf d
 and jpf j = jpi j = p to get:

d� =
1

(2� )2 � (E f � E i )

 
Ze2 (E i + E f )

j~pf � ~pi j
2

! 2 p2
f dpf d

2j~pi j 2E f

=
1

(2� )2 � (E f � E i )

0

B
B
B
B
B
@

Ze2 (E i + E f )
2p2 (1 � cos� )
| {z }

4p2 sin2 �= 2

1

C
C
C
C
C
A

2

p dp d

4E

now, sinceE 2 = m2 + ~p2, usep dp= E dE such that:

p dp d

4E

� (E f � E i ) =
dE � (E f � E i ) d


4
=

d

4

We arrive at the expression for the di�erential cross section:

d� =

 
Ze2E

4�p 2 sin2 �=2

! 2

d


or:

d�
d


=
Z 2E 2e4

16� 2p4 sin4 �=2
=

Z 2E 2� 2

p4 sin4 �=2

In the classical (i.e. non-relativistic) limit we can takeE ! m and Ekin = p2

2m such
that:

d�
d


=
Z 2m2� 2

4m2E 2
kin sin4 �=2

=
Z 2� 2

4E 2
kin sin4 �=2

the well known Rutherford scattering formula.
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5.3 Spinless � � K Scattering

Let us proceed to the case of QED scattering of a� � particle on a K � particle. We
ignore the fact that pions and kaons also are subject to the strong interaction (e.g. we
could consider scattering at large distances).

A � 

A : � �

B : K �

C : � �

D : K �

We know from the previous calculation how a
particle scatters in an external �eld. In this case
the �eld is not external as the particles scatter
in each others �eld. How do we deal with it?

Ansatz:
Consider �rst only the pion. It scatters in the �eld of the kaon. How do we �nd the �eld
generated by the kaon? This �eld is again caused by the transition current j �

BD of the
scattering kaon. The �eld is then found by solving Maxwell's equations for this current
(adopting the Lorentz gauge condition):

@� @� A � = j �
BD = � eNB N �

D (p�
B + p�

D ) ei (pD � pB )x

(see the previous section.)
Since@� @� e� iqx = � q2 e� iqx we can verify that

A � =
e
q2

NB N �
D (p�

B + p�
D ) ei (pD � pB )x = �

1
q2

j �
BD ;

where we have used thatq = ( pD � pB ) = � (pC � pA ) is the 4-vector momentum that is
transmitted from the pion particle to the kaon particle via the A � �eld, i.e. the photon.

In this case the transition amplitude becomes:

Tf i = � i
Z

j �
AC A � d4x = � i

Z
j �

AC
� 1
q2

j BD
� d4x = � i

Z
j �

AC
� g��

q2
j �

BD d4x

Note:

1. The expression is symmetric in the two currents. It does not matter whether we
scatter the pion in the �eld of the kaon or the kaon in the �eld of the pion.

2. There is only scattering ifq2 6= 0. This is interesting as for a \normal" photon
one hasq2 = m2 = 0. It implies that we deal with virtual photons; i.e. photons
that are \o� mass-shell".

Writing out the expression we �nd:

Tf i = � ie2
Z

(NA N �
C ) (p�

A + p�
C ) ei (pC � pA )x �

� 1
q2

� (NB N �
D ) (p�

B + p�
D ) ei (pD � pB )x d4x
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Next, do the integrals overx in order to obtain the energy-momentum conservation
� -functions:

Tf i = � ie2 (NA N �
C ) (p�

A + p�
C )

� 1
q2

(NB N �
D )

�
pB

� + pD
�

�
(2� )4 � 4 (pA + pB � pC � pD )

Usually this is written in terms of the matrix elementM as:

Tf i = � i N A NB N �
CN �

D (2� )4 � 4 (pA + pB � pC � pD ) � M

with : � iM = ie (pA + pC )�

| {z }
vertex factor

�
� ig��

q2
| {z }

propagator

� ie (pB + pD )�

| {z }
vertex factor

� ig ��

q2

A

B

C

D

ie(pA + pC )�

ie(pB + pD )�

The matrix element M contains:

a vertex factor: for each vertex we introduce the
factor: iep� , where:

� e is the intrinsic coupling strength of the par-
ticle to the e.m. �eld.

� p� is the sum of the 4-momenta before and af-
ter the scattering (remember the particle/anti-
particle convention).

a propagator: for each internal line (photon) we
introduce a factor � ig ��

q2 , where:
� q is the 4-momentum of the exchanged photon
quantum.

Using Fermi's golden rule we can proceed to calculate the relativistic transition
probability:

Wf i = lim
T;V !1

jTf i j2

TV
= lim

T;V !1

1
TV

jNA NB N �
CN �

D j2 jMj 2
�
�
�(2� )4� 4 (pA + pB � pC � pD )

�
�
�
2

Again we use the \trick" :

� (p) = lim
T;V !1

1
(2� )4

Z + T=2

� T=2
dt

Z + V=2

� V=2
d3x eipx

such that
lim

T;V !1

1
TV

j� 4(p)j2 =
1

TV
TV � (p)

We get for the transition amplitude:

Wf i = jNA NB NCND j2 jMj 2 (2� )4 � 4 (pA + pB � pC � pD )
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For the scattering process:A + B ! C + D the cross section is obtained from:

d� =
Wf i

Flux
dLips

Flux = 4
q

(pA � pB )2 � m2
A m2

B =V2

dLips =
V

(2� )3

d3pC

2EC

V

(2� )3

d3pD

2ED

The volume V cancels again and we obtain:

d� =
(2� )4 � 4 (pA + pB � pC � pD )

4
q

(pA � pB )2 � m2
A m2

B

jMj 2 d3pC

(2� )3 2EC

d3pD

(2� )3 2ED

which leads to the di�erential cross section for 2! 2 electromagnetic scattering is (see
exercise 18):

d�
d


=
1

64� 2

1
s

�
�
�
�
�
~pf

~pi

�
�
�
�
�

jMj 2

We will work it out for the relativistic case that: E = p, i.e. m � 0.

p�
A = ( p; p;0; 0)

p�
B = ( p;� p;0; 0)

p�
C = ( p; pcos�; p sin�; 0)

p�
D = ( p;� pcos�; � psin�; 0)

q� = ( pD � pB )� = (0 ; p(1 � cos� ); � psin�; 0)

p
C 

p
B

Ap

p
D

q2
q

We calculate the matrix element and the di�erential cross section using:

(pA + pC )� = (2 p; p(1 + cos� ); psin�; 0)

(pB + pD )� = (2 p;� p(1 + cos� ); � psin�; 0)

to get:

(pA + pC )� g�� (pB + pD )� = p2 (6 + 2 cos� )

q2 = � 2p2 (1 � cos� )

We then �nd for the matrix element:

� iM = ie (pA + pC )� � ig��

q2
ie (pB + pD )�

M = e2 p2 (6 + 2 cos� )
2p2 (1 � cos� )

= e2

 
3 + cos�
1 � cos�

!
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and then:

jMj 2 =
�
e2

� 2
 

3 + cos�
1 � cos�

! 2

Finally we obtain from:
d�
d


=
1

64� 2

1
s

p
p

jMj 2

the cross section (� = e2=4� ):

d�
d


=
1

64� 2

1
s

�
e2

� 2
 

3 + cos�
1 � cos�

! 2

=
� 2

4s

 
3 + cos�
1 � cos�

! 2

This is the QED cross section for spinless scattering.

5.4 Particles and Anti-Particles

We have seen that the negative energy state of a particle can be interpreted as the
positive energy state of its anti-particle. How does this e�ectenergy conservation that
we encounter in the� -functions? We have seen that the Matrix element has the form
of:

M /
Z

� �
f (x) V(x) � i (x) dx

Let us examine four cases:

� Scattering of an electron and a photon:

k

pi

pf

M /
Z �

e� ip f x
� �

e� ikx e� ip i x dx

=
Z

e� i(pi + k� pf )x dx

= (2 � )4 � (E i + ! � E f ) � 3
�
~pi + ~k � ~pf

�

) Energy and momentum conservation are
guaranteed by the� -function.

� Scattering of a positron and a photon:

k

� pi

� pf

Replace the anti-particles always by particles by
reversing (E; ~p ! � E; � ~p) such that now:
incoming state = � pf , outgoing state = � pi :

M /
Z �

e� i ( � pi )x
� �

e� ikx e� i ( � pf )x dx

=
Z

e� i(pi � pf + k)x dx

= (2 � )4 � (E i + ! � E f ) � 3
�

~pi + ~k � ~pf

�
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� Electron positron pair production:

k

p�

-p+

M /
Z �

e� ip � x
� �

e� i ( � p+ + k)x dx

=
Z

e� i (k� p+ � p� )x dx

= (2 � )4 � (k � p� � p+ )

� Electron positron annihilation:

-p+

p�

k M /
Z �

e� i (k� p+ )x
� �

e� i (p� )x dx

=
Z

e� i (p� + p+ � k)x

= (2 � )4 � (p� + p+ � k)

Exercise 20
Decay rate of� 0 !  :

(a) Write down the expression for the total decay rate� for the decay: A ! C + D

(b) Assume that particle A is a � 0 particle with a mass of 140 MeV and that particles
C and D are photons. Draw the Feynman diagram for this decay

(i) assuming the pion is au�u state.

(ii) assuming the pion is ad �d state.

(c) For the Matrix element we have: M � f � e2, where for the decay constant we
insert f � = m� .

(i) Where does the factore2 come from?

(ii) What do you think is the meaning of the factor f � ? Describe it qualitatively.

(d) The � 0 is actually a u�u + d �d wave with 3 colour degrees of freedom.

(i) Give the expression for the decay rate.

(ii) Calculate the decay rate expressed in GeV.

(iii) Convert the rate into seconds using the conversion table of the introduction
lecture.

(iv) How does the value compare to the Particle Data Group (PDG) value?
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Lecture 6

The Dirac Equation

Introduction

It is sometimes said that Schr•odinger had �rst discovered the Klein-Gordon equation
before the equation carrying his own name, but that he had rejected it because it was
quadratic in @

@t. In Lecture 2 we have seen how indeed the Klein-Gordon equation leads
to the interpretation of negative probabilities: � = 2 jN j2E, where the energy can be:
E = �

p
~p2 + m2.

To avoid this problem Dirac in 1928 tried to make a relativistic correct equation that
was linear in @

@t. He wanted to combine the merits of a linear combination (no negative
probabilites) with the relativistic correctness of the K.G. equation. Since he wanted the
equation to be linear in @

@t, Lorentz covariance requires it to be also linear in~r .
What Dirac found, to his own great surprise, was an equation that describes particles

with spin 1
2 , i.e. the fundamental fermions. At the same time he predicted the existence

of anti-matter. This was not taken serious untill 1932, when Anderson found the anti-
electron: the positron.

6.1 Dirac Equation

Write the Hamiltonian in a general form1:

H = ( ~� � ~p+ �m )  (6.1)

with co•e�cients � 1; � 2; � 3; � . These must be chosen such that after squaring one �nds:

H 2 =
�
~p2 + m2

�
 

Let us try eq 6.1 and see what happens:

H 2 = ( � i pi + �m )2  with : i = 1; 2; 3

=

0

B
@ � 2

i|{z}
=1

p2
i + ( � i � j + � j � i )| {z }

=0 i>j

pi pj + ( � i � + �� i )| {z }
=0

pi m + � 2
|{z}
=1

m2

1

C
A  

1Here ~� � ~p = � x px + � y py + � zpz
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So we have the following requirements:

� � 2
1 = � 2

2 = � 2
3 = � 2 = 1

� � 1; � 2; � 3; � anti-commute with each other.

Note that Dirac discovered this just a few years after the beginning of the formulation of
quantum mechanics and commuting operators. He was highly interested in the mathematical
behaviour of the operators.

Immediatly we conclude that~�; � cannot be ordinary numbers, but that they must
be matrices. They now operate on a wave function which has become a column vector
(called a spinor). This was not believed when Dirac �rst published his theory.

The lowest dimensional matrices that have the desired behaviour are 4� 4 matrices
(see the book of Aitchison (1972) chapter 8; section 1). The choice of the (~�; � ) is
howevernot unique. Here we choose the Dirac-Pauli representations:

~� =

 
0 ~�
~� 0

!

; � =

 
I 0
0 � I

!

where~� are the Pauli matrices:

� 1 =

 
0 1
1 0

!

; � 2 =

 
0 � i
i 0

!

; � 3 =

 
1 0
0 � 1

!

Note that the physics is independent of the representation. It only depends on the
anti-commuting behaviour of the operators. Another representation is the Weyl repre-
sentation:

~� =

 
� ~� 0
0 ~�

!

; � =

 
0 I
I 0

!

Exercise 21

(a) Write a general Hermitian 2 � 2 matrix in the form

 
a b
b� c

!

where a and c

are real. Write then b = s + i t and show that the matrix can be written as:
f (a + c) =2gI + s� 1 � t� 2 + f (a � c) =2g� 3

How can we conclude that~� and � cannot be2 � 2 matrices?

(b) Show that the ~� and � matrices in both the Dirac-Pauli as well as in the Weyl
representation have the required anti-commutation behaviour.

One can show using the fact that the energy must be real (see Aitchison) that the
� i and � matrices are Hermitian:

� y
i = � i ; � y = �
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6.2 Covariant form of the Dirac Equation

We had
H = ( ~� � ~p+ �m )  

Now we replace:H ! i @
@t, ~p ! � i ~r to �nd:

i
@
@t

 =
�
� i~� � ~r + �m

�
 

Multiply this equation from the left side by � (note that � 2 = 1):

i�
@
@t

 = � i�~� � ~r  + m  

i�
@
@t

 + i�~� � ~r  � m = 0
 

i�
@
@t

 + i�� 1
@
@x

+ i�� 2
@
@y

+ i�� 3
@
@z

!

 � m = 0

in which we see a nice symmetric structure arising. We write the equation in a covariant
notation:

(i � @� � m)  = 0

with :  � = ( �; �~� ) � Dirac  � matrices

In fact the Dirac eq. are really 4 coupled di�erential equations:

for each
j=1,2,3,4

:
4X

k=1

2

4
3X

� =0

i ( � ) jk @� � m� jk

3

5 ( k) = 0

or :

2

6
6
6
6
6
6
6
6
6
4

i

0

B
B
B
B
B
B
B
B
B
@

: : : :
: : : :
: : : :
: : : :

| {z }
 �

1

C
C
C
C
C
C
C
C
C
A

� @� �

0

B
B
B
@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C
C
C
A

� m

3

7
7
7
7
7
7
7
7
7
5

0

B
B
B
@

 1

 2

 3

 4

1

C
C
C
A

=

0

B
B
B
@

0
0
0
0

1

C
C
C
A

or even more speci�c:

" 
11 0
0 � 11

!
i@
@t

+

 
0 � 1

� � 1 0

!
i@
@x

+

 
0 � 2

� � 2 0

!
i@
@y

+

 
0 � 3

� � 3 0

!
i@
@z

�

 
11 0
0 11

!

m

#
0

B
B
B
@

 1

 2

 3

 4

1

C
C
C
A

=

0

B
B
B
@

0
0
0
0

1

C
C
C
A

Take note of the use of the Dirac (or spinor) indices (j; k = 1; 2; 3; 4) simultaneously
with the Lorentz indices (� = 0; 1; 2; 3).

On the other hand, there is an alternative and very short notation: an electron is
described by:

(i � @� � m)  = 0 ) (i 6@� m)  = 0
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while the equation:
i 6@  = 0

contains everything you want to know about a neutrino (assuming m = 0).

6.3 The Dirac Algebra

From the de�nitions of ~� and � we can derive the following relation:

 �  � +  �  � � f  � ;  � g = 2g��

Thus: �
 0

� 2
= 11 ;

�
 1

� 2
=

�
 2

� 2
=

�
 2

� 2
= � 11

Also we have the Hermitean conjugates:

 0y
=  0 ; � y = �

 i y
=

�
�� i

� y
= � i y

� y = � i � = �  i

Then the relation
n
 k ;  0

o
= 0 implies:

 k  0 = �  0 k =  0 k y

thus :  0 k  0 =  02
 k y

=  k y

In general:

 � y =  0 �  0

In words this means that we can undo a hermitean conjugate � y 0 by moving a  0

\through it":  � y 0 =  0 �

Furthermore we can de�ne:

 5 = i 0 1 2 3 =

 
0 11
11 0

!

with the characteristics:

 5y
=  5

�
 5

� 2
= 11

n
 5;  �

o
= 0

6.4 Current Density

Similarly to the case of the Schr•odinger and the Klein-Gordon equations we can derive
a continuity equation to determine the current densityj � : Write the Dirac equation as:

i 0 @ 
@t

+ i k @ 
@xk

� m = 0 k = 1; 2; 3
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We work now with matrices, so instead of complex conjugates we useHermitean conju-
gates:

� i
@ y

@t
 0 � i

@ y

@xk
�
�  k

�
� m y = 0

But now we have a problem! The additional� sign in
�
�  k

�
disturbs the Lorentz

invariant form of the equation. This means we cannot use this equation.
We can restore Lorentz covariance by multiplying the equation from the right by  0.
Or, in other words, we can de�ne theadjoint spinor as:  =  y 0.

Dirac spinor :

0

B
B
B
@

 1

 2

 3

 4

1

C
C
C
A

Adjoint Dirac spinor :
�
 1;  2;  3;  4

�

The adjoint Dirac equation the becomes:

� i
@ 
@t

 0 � i
@ 
@xk

 k � m = 0 k = 1; 2; 3

Now we multiply the Dirac equation from the left by  and we mulitply the adjoint
Dirac equation from the right by  :

�
i@�   � + m 

�
 = 0

 (i@�  �  � m ) = 0

+

 (@�  �  ) +
�
@�   �

�
 = 0

We recognize again the continuity equation:

@� j � = 0 with : j � =
�
  �  

�

6.4.1 Dirac Interpretation

Consider

j 0 =   0 =  y 0 0 =  y =
4X

i =1

j i j2 > 0

Therefore the probability density is always greater then 0! This is the historical moti-
vation of Dirac's work.

However, we had seen in the Pauli-Weiskopf interpretation thatj � =
�
�; ~j

�
was the

charge current density. In that case:

j � = � e  �  

is the electric 4-vector current density (just as we used it before). In the Feynman-
St•uckelberg interpretation the particle solution with negative energyis the antiparticle
solution with positive energy.
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Note:
In the case of Klein-Gordon waves, the current of an antiparticle (j � = 2jN j2p� ) gets
a minus sign w.r.t. the current of the particle, due to reversalof 4-momentum. In
order to keep this convention an additional, ad-hoc,� sign is required for the current
of a spin-1/2 antiparticle (e.g. positron). This additional � sign between particles and
antiparticles is only required for fermionic currents and not for bosonic currents. It
is related to the spin-statistics connection: bosonic wavefunctions are symmetric, and
fermionic wavefunctions are anti-symmetric. In �eld theory2 the extra minus sign is
related to the resulting fact that bosonic �eld operators follow commutation relations,
while fermionic �eld operators follow anti-commutation relations. This was realized
�rst by W.Pauli in 1940. In conclusion: fermionic anti-particle currents get an ad-hoc
additional � sign to maintain the Feynman-St•uckelberg interpretation!

If we use the ansatz: = u(p)e� ipx for the spinor  then we get for the interaction
current density 4-vector:

j �
f i = � euy

f  0 � ui e
i(pf � pi )x

= � euf  � ui e� iqx

j �
f i = � e( uf )

0

B
@  �

1

C
A

0

B
@ ui

1

C
A � e� iqx

Exercise 22: Traces and products of  matrices
For the  matrices we have:

 �  � +  �  � = 2 g��

Use this relation to show that:

(a) 6a 6b+ 6b 6a = 2 ( a � b)

(b) i)  �  � = 4

ii)  � 6a  � = � 2 6a

iii)  � 6a 6b  � = 4 ( a � b)

iv)  � 6a 6b 6c  � = � 2 6c 6b 6a

(c) i) Tr 11 = 4

ii) Tr (odd number of  � 's) = 0

iii) Tr ( 6a 6b) = 4 ( a � b)

iv) Tr ( 6a 6b 6c 6d ) = 4 [ ( a � b)(c � d) � (a � c)(b� d) + ( a � d)(b� c) ]

(d) i) Tr  5 = Tr i  0 1 2 3 = 0

ii) Tr  5 6a 6b = 0

iii) Optional excercise for "die-hards": Tr  5 6a 6b 6c 6d = � 4 i " ��� a� b� c d�

where" ��� = +1 ( � 1) for an even (odd) permutation of 0,1,2,3; and 0 if two
indices are the same.

2See Aitchison & Hey, 3rd edition x7.2



Lecture 7

Solutions of the Dirac Equation

7.1 Solutions for plane waves with ~p= 0

We look for free particle solutions of:

(i � @� � m)  = 0

A quick way to get wave solutions with~p= 0 is to realize that this implies � i ~r  = 0,
or that the wavefunction  has no explicit space dependence. In that case the Dirac
equation (i � @� � m)  = 0 reduces to i 0 @ 

@t = m , or written in the Dirac-Pauli
representation:

 
11 0
0 � 11

!  
@ A
@t

@ B
@t

!

= � i m

 
 A

 B

!

)  =

 
 A

 B

!

=

 
e� imt  A (0)
e+ imt  B (0)

!

where the solution is given immediately. Note that A represents a two-component
spinor with positive energy and B a two-component spinor with negative energy. In
the following, however, we will follow the standard textbookmethod to derive the Dirac
solutions.

Exercise 23
Each of the four components of the Dirac equation satis�es the Klein Gordon equation:
(@� @� + m2)  i = 0.
Show this explicitly by operating on the Dirac equation fromthe left with:  � @� .
Hint: Use the anticommutation relation of the  -matrices.

Ansatz:
This suggests to try the plane wave solutions:

 (x) = u(p) e� ipx

Since (x) is a 4-component spinor, alsou(p) is a 4-component spinor. After substitution
in the Dirac equation we �nd what is called the Dirac equationin the momentum
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representation:

( � p� � m) u(p) = 0

or : (6p � m) u(p) = 0

Remember that the Dirac equation is a linear set of equations (use here the Pauli-Dirac
representation):

"  
11 0
0 � 11

!

E �

 
0 � i

� � i 0

!

pi �

 
11 0
0 11

!

m

#  
uA

uB

!

= 0

In fact we can recognize two coupled equations:
(

(~� � ~p) uB = ( E � m) uA

(~� � ~p) uA = ( E + m) uB

whereuA and uB are now each two component spinors.
Let us �rst look at solutions for a particle at rest: ~p= 0:

(
(~� � ~p) uB = ( E � m) uA

(~� � ~p) uA = ( E + m) uB
)

(
E uA = m uA

E uB = � m uB

For these equations there are 4 independent solutions, the eigenvectors:

u(1) =

0

B
B
B
@

1
0
0
0

1

C
C
C
A

; u(2) =

0

B
B
B
@

0
1
0
0

1

C
C
C
A

; u(3) =

0

B
B
B
@

0
0
1
0

1

C
C
C
A

; u(4) =

0

B
B
B
@

0
0
0
1

1

C
C
C
A

with eigenvalues:E = m; m; � m; � m, respectively.
u(1) , u(2) are the positive energy solutions ofe� .
u(3) , u(4) are the negative energy solutions ofe� and thus the positive energy solutions
of e+ .

We de�ne the antiparticle solutions as follows:

v(1) (p) = u(4) (� p)

v(2) (p) = � u(3) (� p)

The � sign in u(3) is chosen such that the charge conjugation transformation (see later)
implies u(1) ! v(1) and u(2) ! v(2) .
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7.2 Solutions for moving particles ~p6= 0
Again look at:

(
(~� � ~p) uB = ( E � m) uA

(~� � ~p) uA = ( E + m) uB

Choosenow for the two E > 0 solutions:

u(1)
A =

 
1
0

!

; u(2)
A =

 
0
1

!

Then it follows:

u(1)
B =

~� � ~p
E + m

u(1)
A =

~� � ~p
E + m

 
1
0

!

u(2)
B =

~� � ~p
E + m

u(2)
A =

~� � ~p
E + m

 
0
1

!

So, the two independent solutions are:

u(1) =

 
u(1)

A

u(1)
B

!

; u(2) =

 
u(2)

A

u(2)
B

!

Analogously: choosefor the two E < 0 solutions:

u(3)
B =

 
1
0

!

; u(4)
B =

 
0
1

!

then it follows:

u(3)
A =

~� � ~p
E � m

u(3)
B = �

~� � ~p
jE j + m

 
1
0

!

u(4)
A =

~� � ~p
E � m

u(4)
B = �

~� � ~p
jE j + m

 
0
1

!

So, the two independent solutions are now:

u(3) =

 
u(3)

A

u(3)
B

!

; u(4) =

 
u(4)

A

u(4)
B

!

To gain insight, let us write them out in more detail.
Use the explicit representation:

~� � ~p =

 
0 1
1 0

!

px +

 
0 � i
i 0

!

py +

 
1 0
0 � 1

!

pz

we �nd:

(~� � ~p) u(1)
A =

 
pz px � ipy

px + ipy � pz

!  
1
0

!

=

 
pz

px + ipy

!

and similar for u(2)
A , u(3)

B , u(4)
B .
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Then we �nd the solutions:

electron spinors : u(1) = N

0

B
B
B
B
@

1
0
pz

E + m
px + ip y

E + m

1

C
C
C
C
A

; u(2) = N

0

B
B
B
B
@

0
1

px � ip y

E + m
� pz

E + m

1

C
C
C
C
A

positron spinors : v(1) = N

0

B
B
B
B
@

px � ip y

jE j+ m
� pz

jE j+ m

0
1

1

C
C
C
C
A

; v(2) = N

0

B
B
B
B
@

� pz
jE j+ m

� (px + ip y )
jE j+ m

� 1
0

1

C
C
C
C
A

and we can verify that theu(1) - u(4) solutions are indeed orthogonal.

Exercise 24
Show explicitly that the Dirac equations describes relativistic particles. To do this
substitute the expression:

uB =
~� � ~p

E + m
uA into uA =

~� � ~p
E � m

uB

Hint: Work out the product (~� � ~p)2 in components.

7.3 Particles and Anti-particles

The spinorsu(p) of matter waves are solutions of the Dirac equation:

(6p � m) u(p) = 0 ) solutions with p0 = E > 0

For the antiparticles (the solutionsv(p)) we have substitutedv(p) = u(� p). Remember
that we interpret an antiparticle as a particle travelling back in time. Let us make the
same substitution in the Dirac equation (for negativep0 !):

(� 6p � m) u(� p) = 0 ) replacedp ! � p

Then we �nd for solutions with the newp0 (= E> 0) the Dirac equation for anti-particles:

(6p + m) v(p) = 0
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7.3.1 The Charge Conjugation Operation

The Dirac equation for a particle in an electromagnentic �eld is obtained by substituting
@� ! @� + iqA � in the free Dirac equation. For an electron (q = � e) this leads to:

[ � (i@� + eA� ) � m]  = 0 :

Similarly, there must be a Dirac equation describing the positron (q = + e):

[ � (i@� � eA� ) � m]  C = 0 ;

where the positron wave function C is obtained by a one-to-one correspondence with
the electron wave function . Let us assume that the positron wave function can be
obtained using a charge conjugation matrixC, which operates as follows:

 C = C  
T

= C 0 � :

We note that  is the \row-wise" solution of the adjoint Dirac equation (while  y is not!
- see previous lecture) and 

T
is the associated column vector (like ).

Let us take the complex conjugate of the electron equation:

[�  � � (i@� � eA� ) � m]  � = 0

Assume that there is a matrix (C 0), such that:

� (C 0) � � =  � (C 0)

then we can use the complex conjugated electron equation to show that:

(C 0) [�  � � (i@� � eA� ) � m]  � = 0

[ � (i@� � eA� ) � m] C 0 � = 0

and that we indeed obtain the positron equation if C = C 0 � .
A possible choice of the matrix (C 0) can be shown to be:

C 0 = i 2 =

0

B
B
B
@

1
� 1

� 1
1

1

C
C
C
A

:

7.4 Normalisation of the Wave Function

We choose again (similar to the Klein-Gordon case) a normalisation of the wave function
such that there are 2E particles in a unit volume:

Z

V
�dV =

Z
  0 dV =

Z
 y 0 0 dV =

Z
 y dV
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Substitute now the plane wave solution: = u(p) e� ipx :
Z

�dV =
Z

uy(p) eipx u(p) e� ipx dV = uy(p)u(p)
Z

V
dV

Choose the unit volume and normalise to 2E:
Z

V
dV = 1 ; uy(p)u(p) = 2 E

where for u we must substitute: u1(p); u2(p); v1(p); v2(p). Using orthogonality of the
solutions we get the relations:

u(r ) y
u(s) = 2E � rs r; s = 1; 2

v(r ) y
v(s) = 2E � rs r; s = 1; 2

Explicit calculation gives:

u(1) y
u(1) = N 2

�

1; 0;
pz

E + m
;
px � ipy

E + m

�

0

B
B
B
B
@

1
0
pz

E + m
px + ip y

E + m

1

C
C
C
C
A

= 2E

::::: )
N 2

(E + m)2

0

B
B
@(E + m)2 + p2

x + p2
y + p2

z| {z }
E 2 � m2

1

C
C
A = 2E

::::: )
N 2

(E + m)2 (2E (E + m)) = 2 E

) N =
p

E + m

Analogously foru(2) , v(1) , v(2) .

7.5 The Completeness Relation

Let's look again at the Hermitian conjugate Dirac equation for the adjoint spinors u, v:

Dirac : (6p � m) u = 0

Look at : [( � p� � m) u = 0] y ) uy
�
 � yp� � m

�
= 0

Multiply this from the right side by  0:

uy � y 0p� � uy 0m = 0

Use now:  � y =  0 �  0 to �nd:

uy 0
| {z }

u

 �  0 0
| {z }

1

p� � uy 0
| {z }

u

m = 0

then : u � p� � um = 0



7.5. The Completeness Relation 77

The conjugate Dirac equation is therefore:

u (6p � m) = 0

Also in exactly the same way:

(6p + m) v = 0 ) v (6p + m) = 0

We can now (see exercise 25) derive thecompleteness relations:

X

s=1 ;2

u(s)(p) u(s)(p) = ( 6p + m)

X

s=1 ;2

v(s)(p) v(s)(p) = ( 6p � m)

Note: u u is not an inproduct but we have
here 4x4 matrix relations:
0

B
B
B
@

:
:
:
:

1

C
C
C
A

�(::::) =

0

B
@  �

1

C
A �p� +

0

B
@ 11

1

C
A �m

These relations will be used later on in the calculation of the Feynman diagrams.
(Note :

P
s=3 ;4 u(s)(p) u(s)(p) =

P
s=1 ;2 v(s)(� p) v(s)(� p) = � (6p + m) )

Exercise 25: (See also H&M p.110-111 and Gri�ths p. 242)
The spinorsu, v, �u and �v are solutions of respectively:

(6p � m) u = 0

(6p + m) v = 0

�u (6p � m) = 0

�v (6p + m) = 0

(a) Use the orthogonality relations:

u(r )y u(s) = 2E � rs

v(r )y v(s) = 2E � rs

to show that:

�u(s) u(s) = 2m

�v(s) v(s) = � 2m

(b) Show that: (~� � ~p)2 = j~pj2

(c) Derive the completeness relations:
X

s=1 ;2

u(s)(p) �u(s)(p) = 6p + m

X

s=1 ;2

v(s)(p) �v(s)(p) = 6p � m
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7.6 Helicity

The Dirac spinors for a given momentump have a two-fold degeneracy. This implies
that there must be an additional observable that commutes withH and p and the eigen-
values of which distinguish between the degenerate states.
Could the extra quantum number be spin? So, eg.:u(1) = spin \up", and u(2) =spin \down"?
No! Because spin does not commute withH (see exercise 26).

Exercise 26: (Exercise 7.8 Gri�ths, see also Exercise 5.4 of H & M)
The purpose of this problem is to demonstrate that particles described by the Dirac
equation carry \intrinsic" angular momentum (~S) in addition to their orbital angular
momentum (~L). We will see that ~L and ~S are not conserved individually but that their
sum is.

(a) Compare the Dirac equation

( � p� � m)  = 0 ;

with Schr•odinger's equation
H = E ;

and derive an expression for the HamiltonianH from this (see previous lecture).

(b) The orbital angular momentum is ~L = ~r � ~p. Show that [pi ; x j ] = � i� ij and use
this to show that ~L does not commute withH :

h
H; ~L

i
= � i 0 (~ � ~p) :

(c) Show that ~S, given by:

~S =
1
2

~� =
1
2

 
~� 0
0 ~�

!

also does not commute with H:
h
H; ~S

i
= i 0 (~ � ~p) :

We see from (b) and (c) that the sum of the commutators is equal to0, and
therefore ~J = ~L + ~S is conserved.

The fact that spin is not a good quantum number can also be realised upon inspec-
tion of the solutions u:

u(1) =

0

B
B
B
B
@

1
0
pz

E + m
px + ip y

E + m

1

C
C
C
C
A

So solutions can have:px 6= 0 & py 6= 0 & pz 6= 0.
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The spin operator is de�ned as:

~� =

 
~� 0
0 ~�

!

If it commutes, the states should be eigenstates of the spin operator and we expect:

~� u (1) = s u(1) ?

This is not possible as can be seen by requiring the equation:

 
~� 0
0 ~�

!

0

B
B
B
B
@

 
1
0

!

 
pz=(E + m)

(px + ipy) =(E + m)

!

1

C
C
C
C
A

?
=

s

0

B
B
B
B
@

 
1
0

!

 
pz=(E + m)

(px + ipy) =(E + m)

!

1

C
C
C
C
A

to be true for any px , py, pz.
However, it can be made to work if we de�ne thehelicity � as:

� =
1
2

~� � p̂ �
1
2

 
~� � p̂ 0

0 ~� � p̂

!

We could interpret the helicity as the \spin component in the direction of movement".
(Or: we choosepx = py = 0 and consider only� z in the equation above). In this case
the orbital angular momentum is zero by de�nition and andJ = S is conserved.

One can verify that indeed� commutes with the HamiltonianH = ~� � ~p+ �m :
h
H; ~� � p̂

i
= ::: = 0

Choose~p= ((0 ; 0; p). For the spin component in the direction of movement we have
the eigenvalues:

1
2

(~� � p̂) uA =
1
2

� 3uA = �
1
2

uA

1
2

(~� � p̂) uB =
1
2

� 3uB = �
1
2

uB

Positive helicity = spin and momentum parallel
Negative helicity = spin and momentum anti-parallel
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Exercise 27: (Exercise 5.5 of H & M)

(a) Use the equations
(~� � ~p) uA = ( E + m) uB (7.1)

to show that, for a non-relativistic electron with velocity � , uB is een factor 1
2 �

smaller then uA . In a non-relativistic description  A and  B are often called
respectively the \large" and \small" components of the electron wavefunction.

(b) Show that the Dirac equation for an electron with charge� e in the non-relativistic
limit in an electromagnetic �eld A � = ( A0; A ) reduces to the Schr•odinger-Pauli
equation � 1

2m

�
~p+ e~A

� 2
+

e
2m

~� � B � eA0
�

 A � ENR  A ; (7.2)

where the magnetic �eld ~B = ~r� ~A, and the non-relativistic energyENR = E � m.
Assume that jeA0j << m .
Do this by substituting p� + eA� for p� in eq 7.1 and solve the equations for A .
Use:

~p� ~A + ~A � ~p= � i ~r � ~A ;

where~p= � i ~r .
The term with eA0 in 7.2 is a constant potential energy that is of no further
importance. The term with ~B arises due to the fact that~p and ~A don't commute.
In this term we recognise the magnetic �eld:

� ~� � ~B = � g
e

2m
~S � ~B :

Here g is the gyromagnetic ratio, i.e. the ratio between the magnetic moment
of a particle and its spin. Classicaly we haveg = 1, but according to the Direc
equation (~S = 1

2~� ) one �nds g = 2. The current value of(g � 2)=2 is according to
the Particle Data Book

(g � 2)=2 = 0:001159652193� 0:000000000010

This number, and its precision, make QED the most accurate theory in physics.
The deviation from g = 2 is caused by high order corrections in perturbation
theory.



Lecture 8

Spin 1/2 Electrodynamics

8.1 Feynman Rules for Fermion Scattering

With the spinor solutions of the Dirac equation we �nally have the tools to calculate
cross section for fermions (spin-1/2 particles). Analogously to the case of spin 0 particles
(K.G.-waves) we determine the solutions of the Dirac equations in the presence of a
perturbation potential. So we work with the free spin-1/2 solutions  = u(p) e� ipx that
satisfy the free Dirac equation: ( � p� � m)  = 0.

In order to introduce an electromagnetic perturbation we make again the substitution
for a particle with q = � e: p� ! p� + eA� . The Dirac equation for an electron then
becomes:

( � p� � m)  + e � A �  = 0 (8.1)

Again, we would like to have a kind of Schr•odinger equation, ie. an equation of the type:

(H0 + V)  = E 

In order to get to this form, we multiply eq 8.1 from the left by 0:

!
�
 0 � p� �  0m

�
 + e 0 � A �  = 0

!
�
E �  0 kpk �  0m

�
 = � e 0 � A �  

! E =
�
 0 kpk +  0m

�

| {z }
H 0= ~� �~p+ �m

 � e 0 � A �

| {z }
V

 

For such a theory we can write, in analogy to spinless scattering:

Tf i = � i
Z

 y
f (x) V(x)  i (x) d4x

Note, that the di�erence with the case of the KG solutions in spinless scattering is that
we had:

Tf i = � i
Z

 �
f (x) V(x)  i (x) d4x

where we now have Hermite conjugates instead of complex conjugates.

81
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We substitute for the potential: V(x) = � e 0 � A � to obtain the expression:

Tf i = � i
Z

 y
f (x)

�
� e 0 � A � (x)

�
 i (x)d4x

= � i
Z

 f (x) ( � e)  �  i (x)A � (x) d4x

For the current density we had in a previous lecture the expression:

j � = � e  �  

So we �nd, in complete analogy to the spinless particle case:

Tf i = � i
Z

j f i
� A � d4x

with j f i
� = � e  f  �  i

= � euf  � ui ei(pf � pi )x

and j f i
� can be interpreted as the electromagnetic transition current between statei and

state f .

Remember that:
j f i

� = ( uf )

0

B
@  �

1

C
A

0

B
@ ui

1

C
A =

�
j f i

�

�

Similar to the spinless case we will use theA � solutions of the Maxwell equations
to determine the Feynman rules for scattering of particle with spin. Consider again the
case in which particle 1 scatters in the �eld of particle 2: ie. we consider the interaction:
A + B ! C + D:

q2

uA

uB

uC

uD

j �
(1)

j �
(2)

We had from Maxwell:

2 A � = j �
(2)

to which the solution was:

A � = �
1
q2

j �
(2)

The transition amplitude is then again:

Tf i = � i
Z

j (1)
�

� 1
q2

j �
(2) d4x = � i

Z
j �

(1)

� g��

q2
j �

(2) d4x

which is symmetric in terms of particle (1) and (2). We insert the explicit expression
for the current:

j �
f i = � euf  � ui ei(pf � pi )x
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to obtain:

Tf i = � i
Z

� euC  � uA ei (pC � pA )x �
� g��

q2
� � euD  � uB ei (pD � pB )x d4x

So that we arrive at the \Feynman Rules":

Tf i = � i (2� )4 � 4 (pD + pC � pB � pA ) � M

� iM = ie (uC  � uA )
| {z }

vertex

�
� ig��

q2
| {z }

propagator

� ie (uD  � uB )
| {z }

vertex

without spin: with spin:

1 1
ie (pf + pi )

� ui uf
ie �

Figure 8.1: Vertex factors forleft: spinless particles,right: spin 1/2 particles.

Exercise 28:
A spinless electron can interact withA � only via its charge; the coupling is proportional
to (pf + pi )

� . An electron with spin, on the other hand, can also interact withthe
magnetic �eld via its magnetic moment. This coupling involves the factori� �� (pf � pi ).
The relation between the Dirac current and the Klein-Gordoncurrent can be studied as
follows:

(a) De�ne the antisymmetric � �� tensor as:

� �� =
i
2

( �  � �  �  � )

Show that the Gordon decomposition of the Dirac current can bemade:

uf  � ui =
1

2m
uf

h
(pf + pi )

� + i� �� (pf � pi )�

i
ui

Hint: Start with the term proportional to � �� and use:  �  � +  �  � = 2g�� and
use the Dirac equations: � pi� ui = mui and uf  � pf � = muf .

(b) (optional) Make exercise 6.2 on page 119 of H& M which shows that the Gordon
decomposition in the non-relativistic limit leads to an electric and a magnetic
interaction. (Compare also to exercise 27.)
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8.2 Electron - Muon Scattering

We proceed to use the Feynman rules to calculate the cross section of the process:
e� � � ! e� � � . We want to calculate theunpolarized cross section:

� The incoming particles are not polarized. This implies thatwe averageover spins
in the initial state.

� The polarization of the �nal state particles is not measured. This implies that we
sum over the spins in the �nal state.

The spin summation and averaging means that we replace the matrix element by:

jMj 2 ! jMj 2 =
1

(2sA + 1) (2 sB + 1)

X

Spin

jMj 2

where 2sA + 1 is the number of spin states of particle A and 2sB + 1 for particle B. So
the product (2sA + 1) (2 sB + 1) is the number of spin states in the initial state.

� iM = � ig ��

q2

e� : uA

� � : uB

e� : uC

� � : uD

ieuC  � uA

ieuD  � uB

We have to take the square of the diagram and sum over all spin states. For a given
spin state:

� iM = � e2 uC  � uA
� i
q2

uD  � uB

jMj 2 = e4

"

(uC  � uA )
1
q2

(uD  � uB )

# "

(uC  � uA )
1
q2

(uD  � uB )

#�

=
e4

q4
L ��

electron Lmuon
��

Intermezzo:
If

M = A � B �

then

jMj 2 = [ A � B � ] [A � B � ]�

= ( A0B0 � A1B1 � A2B2 � A3B3) (A �
0B �

0 � A �
1B �

1 � A �
2B �

2 � A �
3B �

3)

= jA0j2jB0j2 � A0A �
1B0B �

1 � A0A �
2B0B �

2 � A0A �
3B0B �

3
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� A1A �
0B1B �

0 + jA1j2jB1j2 + A1A �
2B1B �

2 + A1A �
3B1B �

3

� A2A �
0B2B �

0 + A2A �
1B2B �

1 + jA2j2jB2j2 + A2A �
3B2B �

3

� A3A �
0B3B �

0 + A3A �
1B3B �

1 + A3A �
2B3B �

2 + jA3j2jB3j2

= � �� � ��

with : � �� = A � A � �

� �� = B � B �
�

Next we proceed to take into account the spin. We have:

jMj 2 =
1

(2sA + 1)
1

(2sB + 1)

X

Spin

jMj 2 =
1
4

e4

q4
L ��

electron Lmuon
��

with : L ��
electron =

X

e� spin

[uC  � uA ] [uC  � uA ]�

L ��
muon =

X

� � spin

[uD  � uB ] [uD  � uB ]�

L �� is called the lepton tensor.
We have now split the sum over all spinstates in a sum over electron spins and a

sum over muon spins. So, for each vertex there is a tensorL �� which has the form:

L �� =

2

6
4( u )

0

B
@  �

1

C
A

0

B
@ u

1

C
A

3

7
5

| {z }
a number

2

6
4( u )

0

B
@  �

1

C
A

0

B
@ u

1

C
A

3

7
5

�

| {z }
a number

These numbers are called:bilinear covariants. Their general form is (4 � 4)  and they
have speci�c properties under Lorentz transformations (see Halzen & Martin section 5.6
or Gri�ths section 7.3 for characteristics). They will also appear in the weak interaction
later on, but there they will have a di�erent form then the pure vector form:   �  .

Note: To do the spin summation is rather tedious. The rest of the lectureis just
calculations in order to do this!

Since we work with numberscomplex conjugation is the same as hermitean conju-
gation:

[uC  � uA ]� = [ uC  � uA ]y

while [uC  � uA ]y =
h
uy

C  0 � uA

i y
=

h
uy

A  � y 0uC

i

=
h
uA  0 � y 0uC

i
= [ uA  � uC ]

) Complex conjugation just reverses the order in the product!
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Using this aspect we then write for the lepton tensor:

L ��
e =

X

e spin

(uC  � uA ) � (uA  � uC )

Next we write out the tensor explicitly in all components and wesum over all incoming
spin statess and over all outgoing spinss0:

L ��
e =

X

s0

X

s
u(s0)

C�  �
�� u(s)

A� � u(s)
A  �

� u(s0)
C� �

where � , � ,  , � are the individual matrix element indices that take care of the matrix
multiplication.

At this point we apply Casimir's Tric:
Get the factor u(s0)

C� all the way up in front such that it falls outside the summation over
s. Why can we do this?
Because we have written out all terms of the matrix multiplication in indices; i.e. in
numbers. The behaviour of the matrix multiplication is still valid because of the sum
rules of the indices!

So, now we have:

L ��
e =

X

s0

u(s0)
C� u(s0)

C�

| {z }
(6pC + m) ��

 �
�� �

X

s
u(s)

A� u(s)
A

| {z }
(6pA + m) �

 �
�

and we can use the completeness relations (see previous lecture)1:
X

s
u(s) u(s) = 6p + m

(Remember that these are 4� 4 relations which are valid for each component.)
So we use the completeness relations in order to do the sums over the spins!

The result is:
L ��

e = ( 6pC + m)��  �
�� (6pA + m)�  �

�

Here is the next trick: look at the indices� , � ,  , � ; they are components of 4� 4
matrices. Perform the sum over the indices� , � ,  and say that the result is: A. Then
we �nd that L ��

e / A �� and we have to do the remaining sum over� , which means that
we take the traceof the matrix. In other words, the fact that we sum over all indices
means:

L ��
e = Tr [( 6pC + m)  � (6pA + m)  � ]

1for anti-fermions this gives an overall \� " sign in the tensor: L ��
e ! � L ��

e for each particle !
anti-particle.
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Where are we at this point? We look at the reactione� � � ! e� � � and we have:

jMj 2 =
1

(2sA + 1) (2 sB + 1)

X

Spin

jMj 2

=
1

(2sA + 1) (2 sB + 1)
e4

q4
L ��

e Lm
��

with : L ��
e = Tr [( 6pC + m)  � (6pA + m)  � ]

Lm
�� = Tr [( 6pD + m)  � (6pB + m)  � ]

In order to evaluate these expressions we make use of trace identities.

Intermezzo: Trace theorems

� In general:

{ Tr ( A + B) = Tr( A) + Tr( B)

{ Tr ( ABC ) = Tr ( CAB ) = Tr ( BCA)

� For  -matrices: from the de�nition:  �  � +  �  � = 2g�� it follows:

{ Tr (odd number of  � 's = 0). ) only 0 on the diagonal.

{ Tr (  �  � ) = 4 g�� . ) note that this is a matrix of traces!

{ Tr ( 6a 6b) = 4 a � b

{ Tr ( 6a 6b 6c 6d ) = 4 [ ( a � b) (c � d) � (a � c) (b� d) + ( a � d) (b� c) ]

We are calculating:

L ��
e = Tr [( 6pC + m)  � (6pA + m)  � ] :::::write it out :::::

= Tr [ 6pC  � 6pA  � ]
| {z }

case 2

+ Tr [ m � m � ]
| {z }

case 1

+ Tr [ 6pC  � m � ]
| {z }

3 0s) 0

+ Tr [ m � 6pA  � ]
| {z }

3 0s) 0

Case 1:Tr [m � m � ] = m2Tr [  �  � ] = 4m2g��

Case 2:Tr [ 6pC  � 6pA  � ] =?
Use the rule for Tr (6a 6b 6c 6d ) with a = pC and c = pA , but what are b and d?
) b must be chosen such that � � b=  � . ) b= g�� .
) d must be chosen such that � � d =  � . ) d = g�� .
Therefore (note that � and � are Lorentz-indices while the trace theorem works
in Dirac space!):

Tr [ 6pC  � 6pA  � ]

= 4
h�

pC� g� �
� �

pA� g��
�

� (p�
CpA� )

�
g�� g�� g��

�
+ ( pC� g�� )

�
pA� g��

�i

= 4 [p�
Cp�

A + p�
Cp�

A � (pC � pA ) g�� ]
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Finally we �nd for the tensors:

L ��
e = 4

h
p�

Cp�
A + p�

Cp�
A �

�
pC � pA � m2

e

�
g��

i

Lm
�� = 4

h
pD� pB� + pD� pB� �

�
pD � pB � m2

m

�
g��

i

To recapitulate, the matrix element fore� � � ! e� � � :

jMj 2 =
1

(2sA + 1) (2 sB + 1)
�

e4

q4
� L ��

e Lm
��

and will just �ll in the results of the tensors we just calculated:

L ��
e Lm

�� = 4
h
p�

Cp�
A + p�

Cp�
A �

�
pC � pA � m2

e

�
g��

i
� 4

h
pD� pB� + pD� pB� �

�
pD � pB � m2

m

�
g��

i

= 16 �

(pC � pD ) (pA � pB ) + ( pC � pB ) (pA � pD ) � (pC � pA ) (pD � pB ) + ( pC � pA ) m2
m

(pC � pB ) (pA � pD ) + ( pC � pD ) (pA � pB ) � (pC � pA ) (pD � pB ) + ( pC � pA ) m2
m

� (pC � pA ) (pD � pB ) � (pC � pA ) (pD � pB ) + ( pC � pA ) (pD � pB ) � 4 � (pC � pA ) m2
m � 4

+ m2
e (pD � pB ) + m2

e (pD � pB ) � 4m2
e (pD � pB ) + 4 m2

em2
m

= 32 �
h
(pA � pB ) (pC � pD ) + ( pA � pD ) (pC � pB ) � m2

e (pD � pB ) � m2
m (pA � pC ) + 2 m2

em2
m

i

We then obtain:

jMj 2 =
1
2

�
1
2

�
e4

q4
� L ��

e Lm
��

= 8
e4

q4

h
(pC � pD ) (pA � pB ) + ( pC � pB ) (pA � pD ) � m2

e (pD � pB ) � m2
m (pA � pC ) + 2 m2

em2
m

i

� iM =

q2

e�

� �

e�

� �

ieuC  � uA

ieuD  � uB
p
C 

p
B

Ap

p
D

q2
q

Figure 8.2: e� � � ! e� � � scattering. left: the Feynman diagram. right: the scattering
process.

Let us consider the ultrarelativistic limit; ie. we ignore themasses of the particles
with respect to their momentum. Also we use the Mandelstam variables:

s � (pA + pB )2 = p2
A + p2

B + 2 ( pA � pB ) ' 2 (pA � pB )

t � (pD � pB )2 � q2 ' � 2 (pD � pB )

u � (pA � pD )2 ' � 2 (pA � pD )
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In addition we have the following relations following from energy and momentum
conservation (p�

A + p�
B = p�

C + p�
D ):

(pA + pB )2 = ( pC + pD )2

(pD � pB )2 = ( pC � pA )2

(pA � pD )2 = ( pB � pC )2

)
pA � pB = pC � pD

pD � pB = pC � pA

pA � pD = pB � pC

such that:

(pA � pB ) (pC � pD ) =
1
2

s
1
2

s =
1
4

s2

(pA � pD ) (pC � pB ) =
�

�
1
2

u
� �

�
1
2

u
�

=
1
4

u2

q4 = ( pD � pB )4 = t2

Then the ultrarelativistic limit gives us:

jMj 2 =
8e4

t2

� 1
4

s2 +
1
4

u2
�

= 2e4

 
s2 + u2

t2

!

We de�ne the particle momenta now according to Fig. 8.2:

Take now: pA = ( p; p;0; 0) pC = ( p; pcos�; p sin�; 0)
pB = ( p;� p;0; 0) pD = ( p;� pcos�; � psin�; 0)

We get the for the Mandelstam variables:

s = 4p2 t = � 2p2 (1 � cos� ) u = � 2p2 (1 + cos� )

and we �nally obtain the di�erential cross section:

d�
d


�
�
�
�
�
c:m:

=
1

64� 2
�

1
s

� jMj 2

=
� 2

2s
�

4 + (1 + cos � )2

(1 � cos� )2

with � =
e2

4�
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8.3 Crossing: the process e+ e� ! � + � �

We will use the \crossing" principle to obtainjMj 2
(e+ e� ! � + � � ) from the result ofjMj 2

(e� � � ! e� � � )

B

An anti-particle is a particle where
p is replaced by -p. The diagram in 
terms of particles is:

e e

m m

- -

- --

e

e

m

m

m

e

e

m

- -

+ +

-e me m+ +-m-e-m-e-

p

p' p'

p' p'

A
p

B

p
C

Dp

A

B

C

D

p' p'

-p'-p'

A

B

C

D

P

P

P

P

Replace:

A

B

C

D

P'

-P'

-P'

P'

A

D

C

Figure 8.3: The principle of crossing. Use the anti-particle interpretation of a particle
with the 4-momentum reversed in order to related the Matrix element of the \crossed"
reaction to the original one.

So we replace in the previously obtained result:

s = 2 ( pA � pB ) ! � 2 (p0
A � p0

D ) = u0

t = � 2 (pA � pC ) ! 2 (p0
A � p0

B ) = s0

u = � 2 (pA � pD ) ! � 2 (p0
A � p0

C ) = t0

such that we have2:
jMj

2
e� � � ! e� � � = 2e4 s2 + u2

t2

jMj
2
e� e+ ! � � � + = 2e4 u02 + t02

s02

\t-channel": q2 = t

\s-channel":
q2 = s

2We ignored two times the "� " sign introduced by replacing fermions by antifermions!
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Again we go to the center of mass:

pA = ( p; p;0; 0; )

pB = ( p;� p;0; 0; )

pC = ( p; pcos�; p sin�; 0; )

pD = ( p;� pcos�; � psin�; 0; )

p
C 

p
B

Ap

p
D

q2
q

We calculate the Mandelstam variables:

s = 2 ( pA � pB ) = 4 p2

t = � 2 (pA � pC ) = � 2p2 (1 � cos� )

u = � 2 (pA � pD ) = � 2p2 (1 + cos� )

We immediately get for the matrix element:

jMj
2

= 2e4 t2 + u2

s2
= e4

�
1 + cos2 �

�

This means that we obtain for the cross section:

d�
d


=
� 2

4s

�
1 + cos2 �

�

To calculate the total cross section for the process we integrate over the azimuthal angle
� and the polar angle� :

�
�
e+ e� ! � + � �

�
=

4
3

�
� 2

s

Exercise 29:
Can you easily obtain the cross section of the processe+ e� ! e+ e� from the result of
e+ e� ! � + � � ? If yes: give the result, if no: why not?

Exercise 30: The processe+ e� ! � + � �

We consider scattering of spin 1/2 electrons with spin-0 pions. Weassume point-
particles; i.e. we forget that the pions have a substructure consisting of quarks. Also we
only consider electromagnetic interaction and we assume that the particle masses can
be neglected.

(a) Consider the process of electron - pion scattering:e� � � ! e� � � . Give the matrix
elementM for this process.

(b) Use the principle of crossing to �nd the matrix element fore+ e� ! � + � �

(Note: watch out for ad-hoc� -sign: see footnotes previous pages for antiparticles!)

(c) Determine the di�erential cross sectiond�=d
 in the center-of-mass of thee+ e� -
system
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Lecture 9

The Weak Interaction

In 1896 Henri Becquerel observed that Uranium a�ected photographic plates. He was
studying the e�ect of uorescence, which he thought was caused by the X-rays that
were discovered by Wilhelm R•ontgen. To test his hypothesis he wanted to observe that
this uorescence radiation also a�ected photographic plates.He discovered by accident
that the Uranium salt he used also a�ected the photographic platewhen they werenot
exposed to sunlight. Thus he discovered natural radioactivity.
We know now that the weak interaction in nature is based on the decay: n ! p + e� + � e

and has a lifetime of� = 886s.

n
p+

e-

ne

Compare the lifetimes of the following decays:

weak : � � ! � � � � � = 2:6 � 10� 8 sec

� � ! e� � e� � � = 2:2 � 10� 6 sec

with : e:m: : � 0 !  � = 8:4 � 10� 17 sec

strong : � ! �� � = 4:4 � 10� 23 sec (� = 150 MeV)

and realise that the lifetime of a process is inversely proportional to the strength of the
interaction. Note in addition that:

1. All fermions \feel" the weak interaction. However, when present the electromag-
netic and strong interactions dominate.

2. Neutrino's feel only the weak interaction. This is the reason why they are so hard
to detect.

93
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9.1 The 4-point interaction

Based on the model of electromagnetic interactions Fermi invented in 1932 the so-
called 4-point interaction model, introducing the Fermi constant as the strength of the
interaction: GF � 1:166� 10� 5GeV� 2

� e

n

e�

p+
The \Feynman diagram" of the 4-point in-
teraction \neutrino scattering on a neutron"
has the following matrix element:

M = GF (up � un ) (ue � u� )

This is to be compared to the electromagnetic diagram for electron proton scattering:

q2

e�

p+

e�

p+ Here the matrix element was:

M =
4��
q2

(up � up) (ue � ue)

1. e2 = 4�� is replaced byGF

2. 1=q2 is removed

We take note of the following facts of the weak interaction:

1. The hadronic current j h
� has � Q = 1, the leptonic current has � Q = � 1. We

refer to this as: charged currents, since there is a net charge transferred from the
hadron current to the lepton current. We will see later that neutral weak currents
turn out to exist as well.

2. There is a coupling constantGF , which now plays a similar rôle as� in QED.

3. There is no propagator; ie. a \4-point interaction".

4. The currents have what is called a \vector character" similar as in QED. This
means that the currents are of the form  �  .

The vector character of the interaction was in fact just a guessthat turned out successful
to describe many aspects of� -decay. There was no reason for this choice apart from
similarity of QED. In QED the reason that the interaction has a vector behaviour is the
fact that the force mediator, the foton, is a spin-1, or vectorparticle.

In the most general case the matrix element of the 4-point interaction can be written
as:

M = GF

�
 p (4 � 4)  n

� �
 e (4 � 4)  �

�

where (4� 4) are combinations of -matrices. Lorentz invariance of the interaction puts
restrictions on the form of the bilinear covariants of any possible interaction.
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For any possible theory (or \force") the bilinear covariants can be of the following type:

current # components #  -matrices spin
Scalar   1 0 0
Vector   �  4 1 1
Tensor  � ��  6 2 2
Axial vector   �  5 4 3 1
Pseudo scalar   5 1 4 0

Table 9.1: Possible forms of the bilinear covariants.� �� � i
2 ( �  � �  �  � ). Note that

the total number of components is 16.

In the most general case the 4-point weak interaction can be written as:

M = GF

S;P;V;A;TX

i;j

Cij (up Oi un ) (ue Oj u� )

whereOi , Oj are operators of the formS, V, T, A, P.
It can be shown with Dirac theory (see eg. Perkins: \Introduction to High Energy
Physics", 3rd edition, appendix D) that:
S, P, T interactions in n ! pe� e imply: helicity e = helicity � e,
V , A, interactions in n ! pe� e imply: helicity e = -helicity � e.

In 1958 Goldhaber et. al. measured experimentally that the weak interaction is of
the type: V, A, (ie. it is not S, P, T). See Perkins ed 3,x7.5 for a full description of
the experiment. The basic idea is the following.
Consider the electron capture reaction:152Eu + e� ! 152 Sm� (J = 1) + �

1/2

+ e- + =+1/2nl

+ e- + l =n -1/2

Eu152 + e- 152Sm* + n

B)

A)
1/21/2 1

11/2

By studying the consecutive decay152Sm� ! 152 Sm +  it was observed that only
case B actually occurred. In other words: neutrino's have helicity -1/2. From this it
was concluded that in the weak interaction only theV, A currents are involved and not
S, P, T!
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9.1.1 Lorentz covariance and Parity

Let us consider a Lorentz transformation:x0� = � �
� x � . The Dirac equation in each of

the two frames is then, respectively:

i � @ (x)
@x�

� m (x) = 0

i � @ 0(x0)
@x0�

� m 0(x0) = 0

For the wave function there must exist a relation with an operator S, such that:

 0(x0) = S (x)

Since the Dirac spinor is of the form (x) = u(p) e� ipx , S is independent ofx and only
acts on the spinoru. The Dirac equation after the Lorentz transformation becomes:

i � @S( (x))
@x0�

� mS ( (x)) = 0

and if we act on this equation byS� 1 from the left:

iS � 1 � S (@ (x))
@x0�

� mS� 1S (x) = 0

This equation is consistent with the orginal Dirac equation ifthe relation
S� 1 � S = � �

�  � holds and we used that@=@x� = � �
� @=@x0� .

Let us now take a look at the parity operator which inverts space: ie. t ! t ; ~r ! � ~r.
The parity Lorentz transformation is:

� �
� =

0

B
B
B
@

1
� 1

� 1
� 1

1

C
C
C
A

Which is the \Dirac" operator that gives:  0(x0) = S (x)?
The easiest way is to �nd it is to use the relation:S� 1

p  � Sp = � �
�  � = (  0; �  1; �  2; �  3),

or, more explicitly, to �nd the matrix Sp for which:

S� 1
p  0Sp =  0

S� 1
p  kSp = �  k

which has the solutionSp =  0.
Alternatively, we can get the parity operator from the Dirac equation. Assume that

the wave function  (~r; t) is a solution of the Dirac equation:
 

 0
@
@t

+  k
@

@xk
� m

!

 (~r; t) = 0
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then, after a parity transformation we �nd:
 

 0
@
@t

�  k
@

@xk
� m

!

 (� ~r; t) = 0

So,  (� ~r; t) is not a solution of the Dirac equation due to the additional - sign!
Multiply the Dirac equation of the parity transformed spinor from the left by  0, to
�nd:

 0

 

 0
@
@t

�  k
@

@xk
� m

!

 (� ~r; t) = 0

)

 

 0
@
@t

 0 +  k
@

@xk
 0 � m 0

!

 (� ~r; t) = 0

)

 

 0
@
@t

+  k
@

@xk
� m

!

 0 (� ~r; t) = 0

We conclude that if  (~r; t) is a solution of the Dirac equation, then 0 (� ~r; t) is also
a solution (in the mirror world).
In other words: under the parity operation (S =  0):  (~r; t) !  0 (� ~r; t).

An interesting consequence can be derived from the explicit representation of the 0

matrix:

 0 =

 
11 0
0 � 11

!

from which it is seen that the parity operator has an opposite sign for the positive and
negative solutions. In other words: fermions and anti-fermions have opposite parity.

What does this imply for the currents in the interactions? Under the Parity operator
we get:

S :   !   0 0 =   Scalar

P :   5 !   0 5 0 = �   5 Pseudo Scalar

V :   �  !   0 �  0 =

(
  0 

�   k  
Vector

A :   �  5 !   0 �  5 0 =

(
�   0 
  k  

Axial Vector.

We had concluded earlier that the weak matrix element in neutron decay is of the
form:

M = GF

V;AX

i;j

Cij (upOi up) (ueOj u� )

But: if there is a contribution from vector as well asfrom axial vector then we must
have parity violation!
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9.2 The V � A interaction

It turns out that the only change that is needed in the pure vector coupling of Fermi is:

(ue  � u� ) !
�

ue  � 1
2

�
1 �  5

�
u�

�

This is the famousV � A interaction where the vector coupling and the axial vector cou-
pling are equally strong present. The consequence is that thereis maximal violation
of parity in the weak interaction.

Exercise 31: Helicity vs Chirality

(a) Write out the chirality operator  5 in the Dirac-Pauli representation.

(b) The helicity operator is de�ned as� = ~� � p̂. Show that helicity operator and the
chirality operator have the same e�ect on a spinor solution, i.e.

 5  =  5

 
� (s)

~� �~p
E + m � (s)

!

� �

 
� (s)

~� �~p
E + m � (s)

!

= �  

in the ultrarelativistic limit that E >> m .

(c) Explain why the weak interaction is calledleft-handed .

For neutron decays there is a complication to test theV � A structure since the
neutron and the proton are not point particles. The observed matrix element for neutron
decays is:

M =
GFp

2

�
up �

�
CV � CA  5

�
un

� �
ue �

�
1 �  5

�
u�

�

It has the follwing values for the vector and
axial vector couplings:
CV = 1:000� 0:003,CA = 1:260� 0:002
However, the fundamental weak interaction
between the quarks and the leptons are pure
V � A.

e

n p+

n



9.3. The Propagator of the weak interaction 99

9.3 The Propagator of the weak interaction

The Fermi theory has a 4-point interaction: there is no propagator involved to transmit
the interaction from the lepton current to the hadron current. However, we know now
that forces are carried by bosons:

� the electromagnetic interaction is carried by the massless photon which gives rise
to a ! 1

q2 propagator

� the weak interaction is carried by the massiveW, Z bosons, for which we have
the propagators: 1

M 2
W � q2 and 1

M 2
Z � q2 .

Let us consider an interaction at low energy; ie. the case thatM 2
W >> q 2. In that case

the propagator reduces to 1
M 2

W
.

g
W

g

strength: � GFp
2

� g2

8M 2
W

We interpret the coupling constantg of the weak interaction exactly likee in QED.
How \weak" is the weak interaction? In QED we have:� = e2

4� = 1
137

In the weak interaction it turns out: � w = g2

4� = 1
29

The interaction is weak because the massMW is high! The intrinsic coupling constant
is not small in comparison to QED. As a consequence it will turn outthat at high
energies:q2 � M 2

W the weak interaction is comparable in strength to the electromagnetic
interaction.

9.4 Muon Decay

Similar to the processe+ e� ! � + � � in QED, the muon decay process� � ! e� � e� � is
the standard example of a weak interaction process.

m

n

n
e

e
m-(p)

(k')

(k)

-(p')

W
m(p)-

nm(k)

e- (p')

ne(-k')

Figure 9.1: Muon decay:left: Labelling of the momenta,right: Feynman diagram. Note
that for the spinor of the outgoing antiparticle we use:u� e(� k0) = v� e (k

0).

Using the Feynman rules we can write for the matrix element:

M =
g

p
2

0

B
@ u(k)

| {z }
outgoing � �

 � 1
2

�
1 �  5

�
u(p)
| {z }

incoming �

1

C
A

1
M 2

W| {z }
propagator

g
p

2

0

B
@ u(p0)

| {z }
outgoing e

 �
1
2

�
1 �  5

�
v(k0)
| {z }

outgoing � e

1

C
A
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Next we square the matrix element and sum over the spin states, exactly similar
to the case ofe+ e� ! � + � � . Then we use again the tric of Casimir as well as the
completeness relations to convert the sum over spins into a trace. The result is:

jMj
2

=
1
2

X

Spin

jMj 2 =
1
2

 
g2

8M 2
W

! 2

� Tr
n
 �

�
1 �  5

�
(6p 0+ me)  �

�
1 �  5

�
6k 0

o

� Tr
n
 �

�
1 �  5

�
6k  �

�
1 �  5

�
(6p + m� )

o

Now we use some more trace theorems (see below) and alsoGFp
2

= g2

8M 2
W

to �nd the result:

jMj
2

= 64 G2
F (k � p0) (k0 � p)

Intermezzo: Trace theorems used (see also Halzen & Martin p 261):

Tr (  � 6a  � 6b) � Tr (  � 6c  � 6d ) = 32 [(a � c) (b� d) + ( a � d) (b� c)]

Tr
�
 � 6a  �  5 6b

�
� Tr

�
 � 6c  �  5 6d

�
= 32 [(a � c) (b� d) � (a � d) (b� c)]

Tr
�
 �

�
1 �  5

�
6a  �

�
1 �  5

�
6b

�
� Tr

�
 �

�
1 �  5

�
6c  �

�
1 �  5

�
6d

�
= 256 (a � c) (b� d)

The decay width we can �nd by applying Fermi's golden rule:

d� =
1

2E
jMj

2
dQ

where : dQ =
d3p0

(2� )3 2E
�

d3k

(2� )3 2!
�

d3k0

(2� )3 2! 0
� (2� )4 � 4 (p � p0 � k0 � k)

with :E = muon energy

E 0 = electron energy

! 0 = electron neutrino energy

! = muon neutrino energy

First we evaluate the expression for the matrix element. We havethe relation
(p = ( m� ; 0; 0; 0)):

p = p0+ k + k0 so : (k + p0) = ( p � k0)

We can also see the following relations to hold:

(k + p0)2 = k2
|{z}
=0

+ p02
|{z}

m2
e � 0

+2 ( k � p0)

(p � k0)2 = p2
|{z}

m2
� � m2

+ k02
|{z}
=0

� 2 (p � k0)
| {z }

m! 0
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Therefore we have the relation: 2 (k � p0) = m2 � 2m! 0, which we use to rewrite the
matrix element as:

jMj
2

= 64 G2
F (k � p0) (k0 � p) = 32 G2

F

�
m2 � 2m! 0

�
m! 0

We had the expression for the decay time:

d� =
1

2E
jMj

2
dQ =

16G2
F

m

�
(m2 � 2m! 0

�
m! 0dQ

(E is replaced bym since the decaying muon is in rest). For the total decay width we
must integrate over the phase space:

� =
Z 1

2E
jMj

2
dQ =

16G2
F

m

Z �
(m2 � 2m! 0

�
m! 0dQ

We note that the integrand only depends on the neutrino energy ! 0. So, let us �rst
perform the integral in dQ over the otherenergies and momenta:

Z

other
dQ =

1

8 (2� )5

Z
� (m � E 0 � ! 0 � ! ) � 3

�
~p0+ ~k0+ ~k

� d3~p0

E 0

d3~k0

! 0

d3~k
!

=
1

8 (2� )5

Z
� (m � E 0 � ! 0 � ! )

d3~p0d3~k0

E 0! 0!

since the� -function gives 1 for the integral over~k.
We also have the relation:

! = jkj = j~p0+ ~k0j =
p

E 02 + ! 02 + 2E 0! 0cos�

where � is the angle between the electron and the electron neutrino.We choose the
z-axis along~k0, the direction of the electron neutrino. From the equation for ! we
derive:

d! =
� 2E 0! 0sin�

2
p

E 02 + ! 02 + 2E 0! 0cos�| {z }
!

d� , d� =
� ! d!

E 0! 0sin�

Next we integrate overd3~p0 = E 02 sin� dE 0d� d� with d� as above:

dQ =
1

8 (2� )5

Z
� (m � E 0 � ! 0 � ! )

E 02 sin�
E 0

dE0d� d�
d3~k0

! 0

1
!

=
1

8 (2� )5 2�
Z

� (m � E 0 � ! 0 � ! ) dE0d!
d3~k0

! 02

(using the relation: E 0sin� d� = � !
! 0 d! ).

Since we integrate over! , the � -function will cancel:

dQ =
1

8 (2� )4

Z
dE0 d3~k0

! 02
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such that the full expression for � becomes:

� =
2G2

F

(2� )4

Z �
m2 � 2m! 0

�
! 0dE0 d3~k0

! 02

Next we do the integral overk0 as far as possible with:
Z

d3~k0 =
Z

! 02 sin� 0d! 0d� 0d� 0 = 4�
Z

! 02 d!

so that we get:

� =
G2

F m

(2� )3

Z
(m � 2! 0) ! 0d! 0dE0

Before we do the integral over! 0 we have to determine the limits:

� maximum electron neutrino energy:
! 0 = 1

2m

� minimum electron neutrino energy:
! 0 = 1

2m � E 0

e

n e-

e-

n

n
n

e

m

m

Therefore we obtain the spectrum:

d�
dE0

=
G2

F m

(2� )3

Z 1
2 m

1
2 m� E 0

(m � 2! 0) ! 0d! 0 =
G2

F m2

12� 3
E 02

 

3 � 4
E 0

m

!

which can be measured experimentally.
Finally we obtain for the decay of the muon:

� �
1
�

=
G2

F m5

192� 3

A measurement of the muon lifetime:� = 2:19703� 0:00004�s determines the Fermi
coupling constant:GF = (1 :16639� 0:00002)�10� 5GeV� 2. This is the standard method
to determine GF or g2

M 2
W

.

9.5 Quark mixing

In muon decay we studied the weak interaction acting between leptons: electron, muon,
electron-neutrino and muon-neutrino. We have seen in the process of neutron decay
that the weak interaction also operates between the quarks. Allfundamental fermions
are susceptible to the weak interaction. Both the leptons and quarks are usually ordered
in a representation of three generations:

Leptons :

 
� e

e

!  
� �

�

!  
� �

�

!

Quarks :

 
u
d

!  
c
s

!  
t
b

!
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In a �rst assumption the charged current weak interaction worksinside the generation
doublets:

W

� e e�
g

W

� � � �
g

W

� � � �
g

W

u dg

W

c sg

W

t bg

To test the validity of this model for quarks let us look at the examples of quark
diagrams of pion decay and kaon decay:

1. pion decay

� � ! � � � �

� � � / g4

M 4
W

/ G2
F

W
p-

u

d

g g m-

nm

2. kaon decay

K � ! � � � �

This decay does occur!

??-
u

g m-

nmW
s

K

9.5.1 Cabibbo - GIM mechanism

We have to modify the model by the replacements:

d ! d0 = d cos� c + s sin� c

s ! s0 = � d sin� c + s cos� c

or, in matrix representation:
 

d0

s0

!

=

 
cos� c sin� c

� sin� c cos� c

!  
d
s

!

where� c is the Cabibbo mixing angle.
In terms of the diagrams the replacement implies:

W

u dg

) W

u d0
g

= W

u dgcos� c

+ W

u sgsin� c

Both the u, d coupling and theu, s coupling exist. In this case the diagrams of pion
decay and kaon decay are modi�ed:
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1. Pion decay

� � ! � � � �

� � � / G2
F cos2 � c

p-
u

d

g m-

nmW

qgcos

2. Kaon decay

K � ! � � � �

� K � / G2
F sin2 � c s

-
u

g m-

nmW

q
K

gsin

In order to check this we can compare the decay rate of the two reactions. A proper
calculation gives:

� ( K � )
� ( � � )

� tan2 � c �
� m�

mK

� 3
 

m2
K � m2

�

m2
� � m2

�

! 2

As a result the Cabibbo mixing angle is observed to be:

� C = 12:8o

The couplings for the �rst two generations are:

W

u dgcos� c

W

c sgcos� c

W

u sgsin� c

W

c dgsin� c

| {z }
Cabibbo \favoured 00decay

| {z }
Cabibbo \suppressed 00decay

Formulated in a di�erent way:

� The avour eigenstatesu, d, s, c are the mass eigenstates. They are the solution
of the total Hamiltonian describing quarks; ie. mainly strong interactions.

� The states

 
u
d0

!

,

 
c
s0

!

are the eigenstates of the weak interaction Hamiltonian,

which a�ects the decay of the particles.

The relation between the mass eigenstates and the interactioneigenstates is a rota-
tion matrix:  

d0

s0

!

=

 
cos� c sin� c

� sin� c cos� c

!  
d
s

!

with the Cabibbo angle as the mixing angle of the generations.
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9.5.2 The Cabibbo - Kobayashi - Maskawa (CKM) matrix

We extend the picture of the previous section to include all three generations. This
means that we now make the replacement:

 
u
d

!  
c
s

!  
t
b

!

)

 
u
d0

!  
c
s0

!  
t
b0

!

with in the most general way can be written as:
0

B
@

d0

s0

b0

1

C
A =

0

B
@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

C
A

| {z }
CKM � matrix

0

B
@

d
s
b

1

C
A

The \ g" couplings involved are:

W

u dVud

W

u sVus

W

u bVub

W

c dVcd

W

c sVcs

W

c bVcb

W

t dVtd

W

t sVts

W

t bVtb

It should be noted that the matrix is not uniquely de�ned since the phases of the
quark wavefunctions are not �xed. The standard representation of this unitary 3 � 3
matrix contains three mixing angles between the quark generations � 12, � 13, � 23, and one
complex phase� :

VCKM =

0

B
@

c12c13 s12s13 s13e� i�

� s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13

s12s23 � c12c23s13ei� � c12s23 � s12c23s13ei� c23c13

1

C
A

wheresij = sin � ij and cij = cos� ij .

In the Wolfenstein parametrization this matrix is:

VCKM �

0

B
@

1 � � 2=2 � A� 3 (� � i� )
� � 1 � � 2=2 A� 2

A� 3 (1 � � � i� ) � A� 2 1

1

C
A

It can be easy seen to includes 4 parameters:

3 real parameters :� , A, �
1 imaginary parameter : i�
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This imaginary parameter is the source of CP violation in the Standard Model. It
means that it de�nes the di�erence between interactions involving matter and those
that involve anti-matter.

We further note that, in case neutrino particles have mass, a similar mixing matrix
also exists in the lepton sector. The Pontecorvo-Maki-Nakagawa-Sakata matrix UP MNS

is then de�ned as follows:
0

B
@

� e

� �

� �

1

C
A =

0

B
@

U11 U12 U13

U21 U22 U23

U31 U32 U33

1

C
A

| {z }
P MNS � matrix

0

B
@

� 1

� 2

� 3

1

C
A

In a completely similar way this matrix relates the mass eigenstates of the leptons (� 1,
� 2, � 3) to the weak interaction eigenstates (� e, � � , � � ). There is an interesting open
question whether neutrino's are their own anti-particles ("Majorana" neutrino's) or not
("Dirac" neutrino's). In case neutrinos are of the Dirac type,the UP MNS matrix has
one complex phase, similar to the quark mixing matrix. Alternatively, if neutrinos are
Majorana particles, theUP MNS matrix includes three complex phases.

It is currently not clear whether the explanation for a matter dominated universe lies
in quark avour physics ("baryogenesis") or in lepton avour physics ("leptogenesis")
and whether it requires physics beyond the Standard Model. Itis however interesting
to note that there exist 3 generations of particles!
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Exercise 32: Pion Decay
Usually at this point the student is asked to calculate pion decay, which requires again
quite some calculations. The ambitious student is encourage totry and do it (using some
help from the literature). However, the exercise below requires little or no calculation
but instead insight in the formalism.

(a) Draw the Feynman diagram for the decay of a pion to a muon and an anti-neutrino:
� � ! � � � � .

Due to the fact that the quarks in the pion are not free particles we cannot just apply
the Dirac formalism for free particle waves. However, we know that the interaction is
transmitted by a W � and therefore the coupling must be of the type:V or A. (Also,
the matrix element must be a Lorentz scalar.) It turns out the decay amplitude has the
form:

M =
GFp

2
(q� f � )

�
u(p) �

�
1 �  5

�
v(k)

�

wherep� and k� are the 4-momenta of the muon and the neutrino respectively, and q is
the 4-momentum carried by theW boson. f � is called the decay constant.

(b) Can the pion also decay to an electron and an electron-neutrino? Write down the
Matrix element for this decay.
Would you expect the decay width of the decay to electrons to be larger, smaller,
or similar to the decay width to the muon and muon-neutrino?
Base your argument on the available phase space in each of the twocases.

The decay width to a muon and muon-neutrino is found to be:

� =
G2

F

8�
f 2

� m� m2
�

 
m2

� � m2
�

m2
�

! 2

The measured lifetime of the pion is� � = 2:6 � 10� 8s which means that f � � m� . An
interesting observation is to compare the decay width to the muon and to the electron:

�( � � ! e� � e)
�( � � ! � � � � )

=

 
me

m�

! 2  
m2

� � m2
e

m2
� � m2

�

! 2

� 1:2 � 10� 4 !!

(c) Can you give a reason why the decay rate into an electron andan electron-neutrino
is strongly suppressed in comparison to the decay to a muon and a muon-neutrino.
Consider the spin of the pion, the handedness of the W coupling and the helicity
of the leptons involved.
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Lecture 10

Local Gauge Invariance

In the next three lectures the Standard Model of electroweakinteractions will be intro-
duced. We will do this via the principle of gauge invariance.The idea of gauge invariance
forms now such a �rm basis of the description of forces that I feelit is suitable to be
discussed in these lectures. As these lectures are not part of a theoretical master course
we will follow a - hopefully - intuitive approach. Certainly we will try to focus, as we
did before, on the concepts rather then on formal derivations.
A good book on this topic is:
Chris Quigg, \Gauge Theories of the Strong, Weak, and Electromagnetic Interactions",
in the series of \Frontiers in Physics", Benjamin Cummings.

10.1 Introduction

The reason why we chose the Lagrangian approach in �eld theory is that it is particularly
suitable to discuss symmetry or invariance principles and conservation laws that they are
related to. Symmetry principles play a fundamental role in particle physics. In general
one can distinguish1 in general 4 groups of symmetries. There is a theorem stating that
a symmetry is always related to a quantity that is fundamentally unobservable. Some
of these unobservables are mentioned below:

� permutation symmetries: Bose Einstein statistics for integer spin particles and
Fermi Dirac statistics for half integer spin particles. The unobservable is the
identity of a particle.

� continuous space-time symmetries:translation, rotation, acceleration, etc. The re-
lated unobservables are respectively: absolute position in space, absolute direction
and the equivalence between gravity and accelleration.

� discrete symmetries:space inversion, time inversion, charge inversion. The unob-
servables are absolute left/right handedness, the direction oftime and an absolute
de�nition of the sign of charge. A famous example in this respect is to try and

1T.D. Lee: \Particle Physics and Introduction to Field Theory"
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make an absolute de�nition of matter and anti-matter. Is this possible? This
question will be addressed in the particle physics II course.

� unitary symmetries or internal symmetries:gauge invariances. These are the sym-
metries discussed in these lectures. As an example of an unobservable quantity
we can mention the absolute phase of a quantum mechanical wave function.

The relation between symmetries and conservation laws is expressed in a fundamental
theorem by Emmy Noether: each continuous symmetry transformation under which the
Lagrangian is invariant in form leads to a conservation law. Invariances underexternal
operations as time and space translation lead to conservation of energy and momentum,
and invariance under rotation to conservation of angular momentum Invariances under
internal operations, like the rotation of the complex phase of wave functions lead to
conserved currents, or more speci�c, conservation of charge.

We believe that the fundamental elementary interactions ofthe quarks and leptons
can be understood as consequences of gauge symmetry priciples. The idea of local gauge
invariant theory will be discussed in the �rst lecture and will befurther applied in the
uni�ed electroweak theory in the second lecture. In the thirdlecture we will calculate the
electroweak processe+ e� ! ; Z ! � + � � , using the techniques we developed before.

10.2 Lagrangian

In classical mechanics the Lagrangian may be regarded as the fundamental object, lead-
ing to the equations of motions of objects. From the Lagrangian, one can construct \the
action" and follow Hamilton's principle of least action to �nd the physical path:

�S = �
Z t2

t1

dt L (q; _q) = 0

whereq; _q are the generalized coordinate and velocity.

Exercise 33:
Prove that satisfaction of Hamilton's principle is guaranteedby the Euler Lagrange
equations:

@L
@q

=
d
dt

 
@L
@_q

!

The classical theory does not treat space and time symmetricallyas the Lagrangian
might depend on theparametert. This causes a problem if we want to make a relativis-
ticaly covariant theory.

In a �eld theory the Lagrangian in terms of generalized coordinates is replacedL(q; _q)
by a Lagrangian density in terms of �elds� (x) and their gradients:

L (� (x) ; @� � (x)) where L �
Z

d3x L (�; @� � )
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The �elds may be regarded as a separate generalized coordinate at each value of its
argument: the space-time coordinatex. In fact, the �eld theory is the limit of a system
of n degrees of freedom wheren tends to in�nity.

In this case the principle of least action becomes:

�
Z t2

t1

d4x L (�; @� � ) = 0

wheret1; t2 are the endpoints of the path.
This is guaranteed by the Euler Lagrange equation:

@L
@�(x)

= @�
@L

@(@� � (x))

which in turn lead to the equation of motion for the �elds.
Note: If the Lagrangian is a Lorentz scalar, then the theory is automatically relativistic
covariant.

What we will do next is to try and construct the Lagrangian for electromagnetic and
weak interaction based on the idea of gauge invariance (or gauge symmetries).

Exercise 34: Lagrangians versus equations of motion

(a) Show that the Euler Lagrange equations of the Lagrangian

L = L f ree
KG =

1
2

(@� � ) (@� � ) �
1
2

m2� 2

of a real scalar �eld � leads to the Klein-Gordon equation.

For a complex scalar �eld one can show that the Lagrangian becomes:

L = j@� � j2 � m2 j� j2

(b) Show that the Euler Lagrange equations of the Lagrangian

L = L f ree
Dirac = i �  � @�  � m �  

leads to the Dirac equation:

(i � @� � m)  (x) = 0

and its adjoint. To do this, consider and � as independent �elds.

(c) Show that the Lagrangian

L = L EM = �
1
4

(@� A � � @� A � ) (@� A � � @� A � ) � j � A � = �
1
4

F �� F�� � j � A �

leads to the Maxwell equations:

@� (@� A � � @� A � ) = j �

Hence the current is conserved (@� j � = 0), sinceF �� is antisymmetric.
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10.3 Where does the name \gauge theory" come
from?

The idea of gauge invariance as a dynamical principle is due to Hermann Weyl. He
called it \eichinvarianz" (\gauge" = \calibration"). Hermann Weyl 2 was trying to �nd
a geometrical basis for both gravitation and electromagnetism. Although his e�ort was
unsuccesfull the terminology survived. His idea is summarized here.

Consider a change in a functionf (x) between point x � and point x � + dx� . If the
space has a uniform scale we expect simply:

f (x + dx) = f (x) + @� f (x)dx�

But if in addition the scale, or the unit of measure, forf changes by a factor (1 +S� dx� )
betweenx and x + dx, then the value off becomes:

f (x + dx) = ( f (x) + @� f (x)dx� ) (1 + S� dx� )

= f (x) + ( @� f (x) + f (x)S� ) dx� + O(dx)2

So, to �rst order, the increment is:

� f = ( @� + S� ) f dx �

In other words Weyl introduced a modi�ed di�erential operator by the replacement:
@� ! @� + S� .

One can see this in analogy in electrodynamics in the replacement of the momen-
tum by the canonical momentum parameter:p� ! p� � qA� in the Lagrangian, or in
Quantum Mechanics:@� ! @� + iqA � , as was discussed in the earlier lectures. In this
case the \scale" isS� = iqA � . If we now require that the laws of physics are invariant
under a change:

(1 + S� dx� ) ! (1 + iqA � dx� ) � exp (iqA � dx� )

then we see that the change of scale gets the form of a change of a phase. When he later
on studied the invariance under phase transformations, he kept using the terminology
of \gauge invariance".

10.4 Phase Invariance in Quantum Mechanics

The expectation value of a quantum mechanicalobservableis typically of the form:

hOi =
Z

 � O 

If we now make the replacement (x) ! ei�  (x) the expectation value of the observable
remains the same. We say that we cannot measure the absolute phase of the wave

2H. Weyl, Z. Phys. 56, 330 (1929)
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function. (We can only measurerelative phases between wavefunctions in interference
experiments, see eg. the CP violation observables.)

But, are we allowed to choose a di�erent phase convention on, say, the moon and
on earth, for a wave function (x)? In other words, we want to introduce the concept
of local gauge invariance. This means that the physics observable staysinvariant under
the replacement:

 (x) !  0(x) = ei� (x)  (x)

The problem that we face is that the Lagrangian densityL ( (x); @�  (x)) depends
on both on the �elds  (x) and on the derivatives@�  (x). The derivative term yields:

@�  (x) ! @�  0(x) = ei� (x) (@�  (x) + i@� � (x) (x))

The second term spoils the fact that the transformation is simplyan overall (unobserv-
able) phase factor. It spoils the phase invariance of the theory. But, if we replace the
derivative @� by the gauge-covariant derivative:

@� ! D � � @� + iqA �

and we require that the �eld A � at the same time transforms as:

A � (x) ! A0
� (x) = A � (x) �

1
q

@� � (x)

then we see that we get an overall phase factor for the covariantderivative term:

D �  (x) ! D �  0(x) = ei� (x)

 

@�  (x) + i@� � (x) (x) + iqA � (x) (x) � iq
1
q

@� � (x) (x)

!

= ei� (x)D �  (x)

As a consequence, quantities like � D �  will now be invariant under local gauge
transformations.

10.5 Phase invariance for a Dirac Particle

We are going to replace in the Dirac Lagrangian:

@� ! D � � @� + iqA � (x)

What happens to the Lagrangian?

L = � (i � D � � m)  

= � (i � @� � m)  � qA�
�  �  

= L f ree � L int

with:
L int = J � A � and J � = q�  �  

which is the familiar current we discussed in previous lectures.
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Exercise 35: Gauge invariance

(a) (i) Consider the Lagrangian for a complex scalar �eld:

L = j@� � j2 � m2 j� j2 :

Make a transformation of these �elds:

� (x) ! eiq� � (x) ; � � (x) ! e� iq� � � (x) :

Show that the Lagrangian does not change.

(ii) Do the same for the Dirac Lagrangian while considering thesimultaneous
transformations:

 (x) ! eiq�  (x) ; � (x) ! e� iq� � (x)

(iii) Noether's Theorem: consider an in�nitesimal transformation:  !  0 =
ei�  � (1 + i� ) . Show that the requirement of invariance of the Dirac
Lagrangian (� L ( ; @�  ; � ; @�

� ) = 0 ) leads to the conservation of charge:
@� j � = 0, with:

j � =
ie
2

0

@ @L
@(@�  )

 � � 
L

@
�
@�

� 
�

1

A = � e�  �  

(b) (i) Start with the Lagrange density for a complex Klein-Gordon �eld

L = ( @� � )� (@� � ) � m2� � �

and show that alocal �eld transformation:

� (x) ! eiq� (x) � (x) ; � � (x) ! e� iq� (x) � � (x)

doesnot leave the Lagrangian invariant.

(ii) Replace now in the Lagrangian:@� ! D � = @� + iqA � and show that the
Lagrangian now does remain invariant, provided that the additional �eld
transforms with the gauge transformation as:

A � (x) ! A0
� (x) = A � (x) � @� � (x) :

(c) (i) Start with the Lagrange density for a Dirac �eld

L = i �  � @�  � m �  

and show that alocal �eld transformation:

 (x) ! eiq� (x)  (x) ; � (x) ! e� iq� (x) � (x)

also doesnot leave the Lagrangian invariant.
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(ii) Again make the replacement:@� ! D � = @� + iqA � where again the gauge
�eld transforms as:

A � (x) ! A0
� (x) = A � (x) � @� � (x) :

and show that the physics nowdoes remain invariant.

In fact, the full QED Lagrangian includes also the so-called kinetic term of the �eld
(the free fotons):

L QED = L f ree � J � A � �
1
4

F�� F ��

with F �� = @� A � � @� A � , where the A �elds are given by solutions of the Maxwell
equations (see lecture 3):

@� F �� = J � :

10.6 Interpretation

What does it all mean?
We started from a free �eld Lagrangian which describes Dirac particles. Then we re-
quired that the �elds have a U(1) symmetry which couples to the charge q. In other
words: the physics does not change if we multiply by a unitary phase factor:

 (x) !  0(x) = eiq� (x)  (x)

However, in order to obtain this symmetry wemust then introduce a gauge �eld, the
photon, which couplesto the chargeq:

D � = @� + iqA � (x)

and which transforms simultaneously as:

A0
� (x) = A � (x) � @� � (x)

the familiar gauge invariance of the electromagnetic �eld (see Lecture 3:� ) � )!
This symmetry is called local gauge invariance under U(1) transformations. While

ensuring the gauge invariance we have obtained the QED Lagrangian that describes the
interactions between electrons and photons!
Note:
If the photon would have a mass, the corresponding term in the Lagrangian would be:

L  =
1
2

m2A � A �

This term obviously violates local gauge invariance, since:

A � A � ! (A � � @� � ) (A � � @� � ) 6= A � A �

Conclusion: the photon must be massless. Later on, in the PPII course, it will be
discussed how masses of vector bosons can be generated in the Higgs mechanism.
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10.7 Yang Mills Theories

The concept ofnon abeliangauge theories is introduced here in a somewhat historical
context as this helps to also understand the origin of the term weak iso-spin and the
relation to (strong-) isospin.

Let us look at an example of the isospin system, i.e. the proton andthe neutron. Let
us also for the moment forget about the electric charge (we switch o� electromagnetism
and look only at the dominating strong interaction) and writethe free Lagrangian for
nucleons as:

L = �p (i � @� � m) p + �n (i � @� � m) n

or, in terms of a composite spinor =

 
p
n

!

:

L = � (i � I @� � I m )  with I =

 
1 0
0 1

!

If we now, instead of a phase factor as in QED, make aglobal rotation in isospin
space:

 !  0 = exp

 

i
~� � ~�

2

!

 

where~� = ( � 1; � 2; � 3) are the usual Pauli Matrices3 and ~� = ( � 1; � 2; � 3) is an arbitrary
three vector. We have introduced a SU(2) phase transformation of special unitary 2x2
transformations (i.e. unitary 2x2 transformations with det=+1).

What does it mean? We state that, if we forget about their electric charge, the
proton and neutron are indistinguishable, similar to the case oftwo wavefunctions with
a di�erent phase). It is just convention which one we call theproton and which one
the neutron. The Lagrangian does not change under such aglobalSU(2) phase rotation.
Imposing this requirement on the Lagrangian leads (again Noether's theorem) to the
conserved current (use in�nitesimal transformation: !  0 = (1 + i

2~� � ~� ) ):

� L =
@L
@ 

� +
@L

@(@�  )
� (@�  ) +

@L
@� 

� � +
@L

@
�
@�

� 
� �

�
@�

� 
�

=
� L
@ 

i
2

~� � ~� +
� L

@(@�  )
i
2

~� � ~� (@�  ) + :::

=

 

@�
@L

@(@�  )

!
i
2

~� � ~�  +
@L

@(@�  )
i
2

~� � ~� (@�  )

= @� ~� �

 
i
2

@L
@(@�  )

~�  

!

where the Euler Lagrange relation has been used to eliminate@L=@ . The equation can
be written in the form of the continuity equation with corresponding conserved current:

@� ~j � = 0 with ~j � = �  � ~�
2

 :

3a representation is: � 1 =
�

0 1
1 0

�
; � 2 =

�
0 � i
i 0

�
; � 3 =

�
1 0
0 � 1

�
;
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However, as this is a global gauge transformation, it implies that once we make a
de�nition at given point in space-time, this convention must be respected anywhere in
space-time. This restriction seemed unnatural to Yang and Mills in a local �eld theory.

Can we also make alocal SU(2) gauge transformation theory? So, let us try to de�ne
a theory where we chose the isospin direction di�erently for anyspace-time point.

To simplify the notation we de�ne the gauge transformation as follows:

 (x) !  0(x) = G(x) (x)

with G(x) = exp
� i

2
~� � ~� (x)

�

But we have again, as in the case of QED, the problem with the transformation of
the derivative:

@�  (x) ! G (@�  ) + ( @� G)  

(just write it out yourself).
So, also here, we must introduce a new gauge �eld to keep the Lagrangian invariant:

L = � (i � D � � Im )  with  =

 
p
n

!

and I =

 
1 0
0 1

!

where we introduce the new covariant derivative:

I@� ! D � = I@� + igB �

whereg is a new coupling constant that replaces the chargee in electromagnetism. The
object B � is now a (2x2) matrix:

B � =
1
2

~� �~b� =
1
2

taba
� =

1
2

 
b3 b1 � ib2

b1 + ib2 � b3

!

~b� = ( b1; b2; b3) are now three gauge �elds. We need now 3 �elds rather then 1, one for
each of the generators of the symmetry group of SU(2):� 1; � 2; � 3.

We want get again a behaviour:

D �  ! D 0
�  0 = G (D �  )

because in that case the Lagrangian� (i � D � � m)  is invariant for local gauge trans-
formations. If we write out the covariant derivative term we get:

D 0
�  0 =

�
@� + igB 0

�

�
 0

= G (@�  ) + ( @� G)  + igB 0
� (G )

If we compare this to the desired result:

D 0
�  0 = G (@�  + igB � )  

= G (@�  ) + igG (B �  )
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then we see that the desired behaviour is obtained if the gauge �eld transforms simul-
taneously as:

igB 0
� (G ) = igG (B �  ) � (@� G)  

which must then be true for all values of the nucleon �eld . Multiplying this operator
equation from the right by G� 1 we get:

B 0
� = GB � G� 1 +

i
g

(@� G) G� 1

Although this looks rather complicated we can again try to interpret this by comparing
to the case of electromagnetism, whereGem = eiq� (x) .
Then:

A0
� = GemA � G� 1

em +
i
q

(@� Gem) G� 1
em

= A � � @� �

which is exactly what we had before.

Exercise 36: (not required)
Consider an in�nitesimal gauge transformation:

G = 1 +
i
2

~� � ~� j� i j << 1

Use the general transformation rule forB 0
� and useB � = 1

2~� � ~b� to demonstrate that
the �elds transform as:

~b0
� = ~b� � ~� � ~b� �

1
g

@� ~�

(use: the Pauli-matrix identity: (~� � ~a)(~� � ~b) = ~a�~b+ i~� � (~a� ~b)).

So for isospin symmetry theba
� �elds transform as an isospin rotation and a gradient

term. The gradient term was already present in QED. The rotation term is new. It
arises due to the non-commutativity of the 2x2 isospin rotations. If we write out the
gauge �eld transformation formula in components:

b0l
� = bl

� � � jkl � j bk �
1
g

@� � l

we can see that there is a coupling between the di�erent components of the �eld. This
is called self-coupling of the �eld. The e�ect of this becomesclear if one also considers
the kinetic term of the isospin gauge �eld (analogous to the QEDcase):

L SU(2) = � (i � D � � m)  �
1
4

~F��
~F ��

Introducing the �eld strength tensor:

F�� =
1
2

~F�� � ~� =
1
2

F a
�� � a
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the Lagrangian is usually written as (using the Pauli identitytr (� a� b) = 2 � ab):

L SU(2) = � (i � D � � m)  �
1
2

tr ( F�� F �� )

with individual components of the �eld strength tensor:

F l
�� = @� bl

� � @� bl
� + g � jkl bj

� bk
�

The consequence of the last term is that the Lagrangian termF�� F �� contains contri-
butions with 2, 3 and 4 factors of theb-�eld. These couplings are respectively referred
to as bilinear, trilinear and quadrilinear couplings. In QEDthere's only the bilinear
photon propagator term. In the isospin theory there are self interections by a 3-gauge
boson vertex and a 4 gauge boson vertex.

10.7.1 What have we done?

We modi�ed the Lagrangian describing isospin 1/2 doublets =

 
p
n

!

:

L f ree
SU(2) = � (i � @� � m)  

We made the replacement@� ! D � = @� + igB � with B � = 1
2~� �~b� , to obtain:

L SU(2) = � (i � D � � m)  

= L f ree
SU(2) �

g
2

~b� � �  � ~�  

= L f ree
SU(2) � L interaction

SU(2)

= L f ree
SU(2) � ~b� � ~J �

where ~J � = g
2

�  � ~�  is the isospin current.
Let us compare it once more to the case of QED:

L U(1) = L f ree
U(1) � A � � J �

with the electromagnetic currentJ � = q�  �  
We have neglected here the kinetic terms of the �elds:

L SU(2) = � (i � D � � m)  �
1
2

trF �� F ��

which contains self-coupling terms of the �elds.
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10.7.2 Assessment

We see a symmetry in the

 
p
n

!

system: the isospin rotations.

� If we require local gauge invariance of such transformations we need to introduce
~b� gauge �elds.

� But what are they? ~b� must be three massless vector bosons that couple to
the proton and neutron. It cannot be the� � ; � 0; � + since they are pseudoscalar
particles rather then vector bosons. It turns out this theory does not describe the
strong interactions. We know now that the strong force is mediated by massless
gluons. In fact gluons have 3 colour degrees of freedom, such that they can be
described by 3x3 unitary gauge transformations (SU(3)), for which there are 8
generators, listed here:

� 1 =

0

B
@

0 1 0
1 0 0
0 0 0

1

C
A � 2 =

0

B
@

0 � i 0
i 0 0
0 0 0

1

C
A � 3 =

0

B
@

1 0 0
0 � 1 0
0 0 0

1

C
A

� 4 =

0

B
@

0 0 1
0 0 0
1 0 0

1

C
A � 5 =

0

B
@

0 0 � i
0 0 0
i 0 0

1

C
A � 6 =

0

B
@

0 0 0
0 0 1
0 1 0

1

C
A

� 7 =

0

B
@

0 0 0
0 0 � i
0 i 0

1

C
A � 8 =

1
p

3

0

B
@

1 0 0
0 1 0
0 0 � 2

1

C
A

The strong interaction will be discussed later on in the particlephysics course.
Next lecture we will instead look at the weak interaction and introduce the concept
of weak iso-spin.

� Also, we have started to say that the symmetry in thep, n system is only present
if we neglect electromagnetic interactions, since obviously from the charge we can
absolutely de�ne the proton and the neutron state in the doublet. In such a case
where the symmetry is only approximate, we speak of abroken symmetryrather
then of an exact symmetry.



Lecture 11

Electroweak Theory

In the previous lecture we have seen how imposing a local gauge symmetry requires a
modi�cation of the free Lagrangian such that a theory with interactions is obtained. We
studied:

� local U(1) gauge invariance:

 (i � D � � m)  =  (i � @� � m) � q  �  
| {z }

J �

A �

� local SU(2) gauge invariance:

 (i � D � � m)  =  (i � @� � m) �
g
2

  � ~�  
| {z }

~J �

~b�

For the U(1) symmetry we can identify theA � �eld as the photon and the Feynman
rules for QED, as we discussed them in previous lectures, follow automatically. For the
SU(2) case we hoped that we could describe the strong nuclear interactions, but this
failed.

Let us now, instead of the strong isospin doublet =

 
p
n

!

introduce the following

doublets:

 L =

 
� L

eL

!

and  L =

 
uL

dL

!

and we speak instead of \weak isospin" doublets. Note that the fermion �elds have an
L index (for \left-handed"). These left handed states are de�ned as:

� L =
1
2

(1 �  5) � u L =
1
2

(1 �  5) u

eL =
1
2

(1 �  5) e dL =
1
2

(1 �  5) d

with the familiar projection operators:

 L =
1
2

(1 �  5)  and  R =
1
2

(1 +  5)  

121
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(Remember: for massless particles" L =  � helicity and  R =  +helicity .)
The origin of the weak interaction lies in the fact that we nowimpose a local gauge

symmetry in weak isospin rotations of left handed fermion �elds.This means that if
we \switch o�" charge we cannot distinguish between a� L and a eL or a uL and a
dL state. The fact that we only impose this on left handed states implies that the
weak interaction is completely left-right asymmetric. (Intuitively this is very di�cult
to accept: why would there be a symmetry for the left-handed states only?!). This is
called maximal violation of parity.

It will turn out that the three vector �elds ( b1; b2; b3 from the previous lecture) can
later be associated with the carriers of the weak interaction,the W + ; W � ; Z bosons.
However, these bosons are not massless. An explicit mass term (L M = Kb� b� ) would
in fact break the gauge invariance of the theory. Their masses can be generated in a
mechanism that is called spontaneous symmetry breaking and involves a new hypothet-
ical particle: the Higgs boson. The main idea of the symmetry breaking mechanism is
that the Lagrangian retains the full gauge symmetry, but thatthe ground state, i.e. the
vacuum, is no longer at a symmetric position. The realization of the vacuum selects a
preferred direction in isospin space, and thus breaks the symmetry. Future lectures will
discuss this aspect in more detail.

To construct the weakSU(2)L theory we start again with the free Dirac Lagrangian
and we imposeSU(2) symmetry (but now on the weak isospin doublets):

L f ree =  L (i � @� � m)  L

Again we introduce the covariant derivative:

@� ! D � = @� + igB � with B � =
1
2

~� �~b�

then:

L f ree ! L f ree � ~b� � J �
weak

with the weak current:

J �
weak =

g
2

 L  � ~�  L

This is just a copy from what we have seen in the strong isospin example.
The model for the weak interactions now contains 3 massless gauge bosons (b1; b2; b3).

However, in nature we have seen that the weak interaction is propagated by 3 massive
bosonsW + ; W � ; Z 0.

From the Higgs mechanism it turns out that the physical �elds associated with b1
�

and b2
� are the chargedW bosons:

W �
� �

b1
� � ib2

�p
2
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11.1 The Charged Current

We will use the de�nition of the W-�elds to re-write the �rst two terms in the Lagrangian
of the weak current:

L = L f ree + L int
weak

with L int
weak = � ~b� � ~J �

weak = � b1
� J 1� � b2

� J 2� � b3
� J 3�

The charged current terms are:

L CC = � b1
� J 1� � b2

� J 2�

with:
J 1� =

g
2

 L  � � 1  L ; J 2� =
g
2

 L  � � 2  L

Exercise 37:
Show that the re-de�nition W �

� = b1
� � ib2

�p
2

leads to:

L CC = � W +
� J + � � W �

� J � �

with: J + � =
g

p
2

 L  � � +  L ; J � � =
g

p
2

 L  � � �  L

and with: � + =

 
0 1
0 0

!

and � � =

 
0 0
1 0

!

So, for the physical �eldsW + and W � the leptonic currents are:

J + � =
g

p
2

� L  � eL ; J � � =
g

p
2

eL  � � L

or written out with the left-handed projection operators:

J + � =
g

p
2

�
1
2

�
1 +  5

�
 � 1

2

�
1 �  5

�
e :

Note that we have the identity:
�
1 +  5

�
 �

�
1 �  5

�
=  � +  5 � �  �  5 �  5 �  5

=  � � 2 �  5 +
�
 5

� 2
 �

= 2 �
�
1 �  5

�

such that we get for the leptonic charge raising current (W + ):

J + � = g
2
p

2
�  � (1 �  5) e
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and for the leptonic charge lowering current (W � ):

J � � = g
2
p

2
e  � (1 �  5) � :

Remembering that a vector interaction has an operator � in the current and an axial
vector interaction a term  �  5, we recognize in the charged weak interaction the famous
\V-A" interaction.

The same is true for the quark-currents and we can recognize the following currents
in the weak interaction:

Charge raising:

W +

e�

� e

W +

d

u

Charge lowering:

W �

e�

� e

W �

d

u

11.2 The Neutral Current

11.2.1 Empirical Appraoch

The Lagrangian for weak and electromagnetic interactions is:

L EW = L f ree � L weak � L EM

L weak = W +
� J + � + W �

� J � � + b3
� J �

3

L EM = a� J �
EM

Let us again look at the interactions for leptons� , e, then:

J �
3 =

g
2

 L  � � 3  L =
g
2

� L  � � L �
g
2

eL  � eL

 

we used :� 3 =

 
1 0
0 � 1

!!

J �
EM = qe  � e = q(eL  � eL ) + q(eR  � eR)

Exercise 38:
Show explicitly that:

  �  =  L  �  L +  R  �  R

making use of =  L +  R and the projection operators1
2 (1 �  5) and 1

2 (1 +  5)
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Experiments have shown that in contrast to the charged weak interaction, the neutral
weak current associated to theZ-boson isnot purely left-handed, but:

J �f
NC =

g
2

 
f

 �
�
Cf

V � Cf
A  5

�
 f

where Cf
V and Cf

A are no longer equal to 1, but they are constants that express the
relative strength of the vector and axial vector components of the interaction. Their
value depends on the type of fermionf , as we will see below.

Taking again the leptons =

 
�
e

!

we get:

J �
NC =

g
2

�  �
�
C �

V � C �
A  5

�
� +

g
2

e  �
�
Ce

V � Ce
A  5

�
e

At this point we introduce the left-handed and right-handedcouplings:

CR � CV � CA CV =
1
2

(CR + CL )

CL � CV + CA CA =
1
2

(CL � CR)

then:
�
CV � CA  5

�
= CV � CA| {z }

CR

 
1 +  5

2

!

+ CV + CA| {z }
CL

 
1 �  5

2

!

so that we can write:

  �
�
CV � CA  5

�
 =

�
 L +  R

�
 � (CR  R + CL  L ) = CR  R  �  R + CL  L  �  L :

For neutrino's we haveC �
L = 1 and C �

R = 0. So, for leptons the observed neutral
current can be written as:

J �
NC =

g
2

(� L  � � L ) +
g
2

(Ce
L eL  � eL ) +

g
2

(Ce
R eR  � eR)

We had for the electromagnetic current:

J �
EM = q (eL  � eL ) + q (eR  � eR)

and for the SU(2) current:

J �
3 =

g
2

(� L  � � L ) �
g
2

(eL  � eL )

We now insert that J �
3 is in fact a linear combination ofJ �

NC and J �
EM :

J �
3 = a � J �

NC + b� J �
EM
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� look at the � L terms: a = 1
� look at the eR terms: g

2Ce
R + q � b= 0 ) Ce

R = � 2qb
g

� look at eL terms : g
2Ce

L + q � b= � g
2 ) Ce

L = � 1 � 2qb
g

Therefore:

CV =
1
2

(CR + CL ) ) Ce
V = �

1
2

�
2q
g

b

CA =
1
2

(CL � CR) ) Ce
A = �

1
2

The vector coupling now contains a constantb which gives the ratio in which theSU(2)
current ( g

2) and the electromagnetic current (q) are related. The constantb is a constant
of nature and is written asb= sin2 � : where� represents theweak mixing angle.
We will study this more carefully below.

11.2.2 Hypercharge vs Charge

Again, we write down the electroweak Lagrangian, but this time we pose a di�erent
U(1) symmetry (see H&M1, Chapter 13):

L EW = L f ree � g ~J �
SU(2) � ~b� � g0

2 J �
Y a�

whereY is the so-calledhyperchargequantum number.
The U(1) gauge invariance in now imposed on the quantity hypercharge rather the
charge, and it has a coupling strengthg0=2.

As before we have the physical charged currents:

W �
� =

b1
� � ib2

�p
2

:

For the neutral currents we say that the physical �elds are the following linear combi-
nations:

A � = a� cos� w + b3
� sin� w (massless)

Z � = � a� sin� w + b3
� cos� w (massive)

and the origin of the nameweak mixing anglefor � w becomes clear.
We can now write the terms forb3

� and a� in the Lagrangian:

� gJ�
3 b3

� �
g0

2
J �

Y a� = �

 

gsin� wJ �
3 + g0cos� w

J �
Y

2

!

A �

�

 

gcos� wJ �
3 � g0sin� w

J �
Y

2

!

Z �

� � qJ�
EM A � � gZ J �

NC Z �

1Halzen and Martin, Quarks & Leptons: \An Introductory Course in Modern Particl e Physics"
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The weak hypercharge is introuced in complete analogy with the strong hypercharge,
for which we have the famous Gellmann - Nishijima relation:Q = I 3 + 1

2YS. In the
electroweak theory we use:Q = T3 + 1

2Y which means:

J �
EM = J �

3 + 1
2J �

Y

then, indeed, for theA � �eld we have:

� gsin� w

 

J �
3 +

g0cos� w

gsin� w
�

1
2

J �
Y

!

= � eJ�
EM ;

provided the following relation holds:

gsin� w = g0cos� w = e :

The weak mixing angle is de�ned as the ratio of the coupling constants of the SU(2)L

group and theU(1)Y group:

tan � w =
g0

g
:

For the Z-currents we then �nd:

�

 

gcos� wJ �
3 �

g0

2
sin� w � 2 (J �

EM � J �
3 )

!

Z �

= :::

= �
e

cos� w sin� w

�
J �

3 � sin2 � wJ �
EM

�
Z �

So we see that:
J �

NC = J �
3 � sin2 � w J �

EM

which is in agreement with what we had obtained earlier:

J �
3 = a � J �

NC + b� J �
EM with a = 1 and b= sin2 � w

11.2.3 Assessment

We introduce a symmetry groupSU(2)L 
 U(1)Y and describe electroweak interactions
with:

�

 

g ~J �
L � ~b� +

g0

2
J �

Y � a�

!

The coupling constantsg and g0 are free parameters (we can also takee and sin2 � w).
The electromagnetic and neutral weak currents are then given by:

J �
EM = J �

3 +
1
2

J �
Y

J �
NC = J �

3 � sin2 � wJ �
EM = cos2 � wJ �

3 � sin2 � w
J �

Y

2
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and the interaction term in the Lagrangian becomes:

�
�

eJ�
EM � A � +

e
cos� w sin� w

J �
NC � Z �

�

in terms of the physical �eldsA � and Z � .

11.3 The Mass of the W and Z bosons

In the electroweak model as introduced here, the gauge �eldsmust be massless, since ex-
plicit mass terms (� � � � � ) are not gauge invariant. In the Standard Model the mass of
all particles are generated in the mechanism of spontaneous symmetry breaking, intro-
ducing the Higgs particle (see later lectures.) Here we just give an empirical argument
to predict the mass of theW and Z particles.

1. Mass terms are of the following form:

M 2
� = h� jH j � i for any �eld �

2. From the comparison with the Fermi 4-point interaction we �nd:

GFp
2

=
g2

8M 2
W

) M 2
W =

p
2g2

8GF
=

p
2

8GF

e2

sin2 �

Thus, we get the following predictions:

MW =

vu
u
t

p
2

8GF

e
sin� w

= 81 GeV

MZ = MW (gz=g) = MW =cos� = 91 GeV

11.4 The Coupling Constants for Z ! f f

For the neutral Z -current interaction we have for the interaction in general:

� igZ J �
NC Z � = � i

g
cos� w

�
J �

3 � sin2 � wJ �
EM

�
Z �

= � i
g

cos� w
 f  �

� 1
2

�
1 �  5

�
T3 � sin2 � wQ

�

| {z }
1
2 (C f

V � C f
A  5)

 f � Z �

which we can represent with the following vertex and Feynman rule:

Z 0

f

f
� i

g
cos� w

 � 1
2

�
Cf

V � Cf
A  5

�
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with:

Cf
L = T f

3 � Qf sin2 � w

Cf
R = � Qf sin2 � w

) Cf
V = T f

3 � 2Qf sin2 � w

Cf
A = T f

3

fermion T3 Q Y Cf
A Cf

V

� e � � � � + 1
2 0 � 1 1

2
1
2

e � � � 1
2 � 1 � 1 � 1

2 � 1
2 + 2 sin2 � w

u c t + 1
2 + 2

3
1
3

1
2

1
2 � 4

3 sin2 � w

d s b � 1
2 � 1

3
1
3 � 1

2 � 1
2 + 2

3 sin2 � w

Table 11.1: The neutral current vector and axial vector couplings for each of the fermions
in the Standard Model.

Exercise 39:
What do you think is the di�erence between an exact and a broken symmetry?
Can you make a (wild) guess what spontaneous symmetry breaking means?
Which symmetry is involved in the gauge theories below? Whichof these gauge sym-
metries are exact? Why/Why not?

(a) U1(Q) symmetry

(b) SU2(u-d-avour) symmetry

(c) SU3(u-d-s-avour) symmetry

(d) SU6(u-d-s-c-b-t) symmetry

(e) SU3(colour) symmetry

(f) SU2(weak-isospin) symmetry

(f) SU5(Grand uni�ed) symmetry

(g) SUSY
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Lecture 12

The Process e� e+ ! � � � +

12.1 The Cross Section of e� e+ ! � � � +

Equipped with the Feynman rules of the electroweak theory weproceed to calculate
the cross section of the electroweak process:e� e+ ! ; Z ! � � � + . We assume the
following kinematics:

-q

m

m

ee

+

-

+

Figure 12.1: Kinematics of the processe� e+ ! � � � + .

There are two Feynman diagrams that contribute to the process:

M  :


e+

e�

� +

� �

M Z :
Z

e+

e�

� +

� �

Figure 12.2: Feynman diagrams contributing toe� e+ ! � � � +

In complete analogy with the calculation of the QED processe+ e� ! e+ e� we obtain
the cross section using Fermi's Golden rule:

d� =
jMj

2

F
dQ

With the phase factor dQ ux factor F :

dQ =
1

4� 2

pf

4
p

s
d
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F = 4pi
p

s

�
�
e� e+ ! � � � +

�
=

1
64� 2

�
1
s

� jMj
2

The Matrix element now includes:

M  = � e2
�
 m  �  m

�
�

g��

q2
�

�
 e

�  e

�

M Z = �
g2

4 cos2 � w

h
 m  �

�
Cm

V � Cm
A  5

�
 m

i
�

g�� � q� q� =M 2
Z

q2 � M 2
Z

�
h
 e

�
�
Ce

V � Ce
A  5

�
 e

i

The propagator for massive vector bosons (Z -boson) is discussed in Halzen & Martin
x6.11 andx6.12. The wave equation of a massless spin-1 particle is:

2 2A � = 0 ) i
� g��

q2

�
2 2 + M 2

�
Z � = 0 ) i

� g�� + q� q� =M 2

q2 � M 2

We can simplify the propagator of theZ if we ignore the lepton masses. In practice
this means that we work in the limit of high-energy scattering. In that case the Dirac
equation becomes:

 e (i@�  � � m) = 0 )  e ( � p�;e ) = 0

Sincepe = 1
2q we also have:

1
2

 e ( � q� ) = 0 ) q� � q� =M 2
z = 0

Thus the propagator simpli�es:

g�� � q� q� =M 2
Z

q2 � M 2
Z

!
g��

q2 � M 2
Z

Thus we have for theZ-exchange matrix element the expression:

M Z =
� g2

4 cos2 � w

1
q2 � M 2

Z
�

h
 m  �

�
Cm

V � Cm
A  5

�
 m

i h
 e  �

�
Ce

V � Ce
A  5

�
 e

i
:

To calculate the cross section by summing overM  and M Z is now straightforward but
a rather lengthy procedure: applying Casimir's trick, tracetheorems, etc. Let us here
try to follow a di�erent approach.

We rewrite the M Z matrix element in terms of right-handed and left-handed cou-
plings, using the de�nitions: CR = CV � CA ; CL = CV + CA . As before we have:

�
CV � CA  5

�
= ( CV � CA ) �

1
2

�
1 +  5

�
+ ( CV + CA ) �

1
2

�
1 �  5

�
:
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Thus:
�
CV � CA  5

�
 = CR  R + CL  L :

Let us now look back at the QED process:

M  =
� e2

s

�
 m  �  m

� �
 e �  e

�

with (see previous lecture):

�
 m  �  m

�
=

�
 L m  �  L m

�
+

�
 R m  �  R m

�

�
 e �  e

�
=

�
 L e  �  L e

�
+

�
 R e  �  R e

�

The fact that there are no terms connectingL-handed to R-handed ( R m  �  L m )
actually implies that we have helicity conservation for highenergies (i.e. neglecting
� m=E terms) at the vertices:

R R L L

or:
L

R

R

L

Figure 12.3: Helicity conservation.left: A right-handed incoming electron scatters into
a right-handed outgoing electron and vice versa in a vector oraxial vector interaction .
right: In the crossed reaction the energy and momentum of one electronis reversed: i.e.
in the e+ e� pair production a right-handed electron and a left-handed positron (or vice
versa) are produced. This is the consequence of a spin=1 force carrier. (In all diagrams
time increases from left to right.)

As a consequence we can decompose the unpolarized QED scatteringprocess as a
sum of 4 cross section contributions (Note: e+

R �  L e etc.(!))

d�
d


unpolarized

=
1
4

f
d�
d


�
e�

L e+
R ! � �

L � +
R

�
+

d�
d


�
e�

L e+
R ! � �

R � +
L

�

d�
d


�
e�

Re+
L ! � �

L � +
R

�
+

d�
d


�
e�

Re+
L ! � �

R � +
L

�
g

where weaverageover the incoming spins andsum over the �nal state spins.
Let us look in more detail at the helicity dependence (H&Mx6.6):
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Final state:

z-axis

z'-axis

q

m

m

+

-

e+ e-

Initial state:

In the initial state the e� and
e+ have opposite helicity (as they
produce a spin 1 ).

The same is true for the �nal state
� � and � + .

So, in the center of mass frame, scattering proceeds from an initial state with JZ =
+1 or � 1 along axisẑ into a �nal state with J 0

Z = +1 or � 1 along axisẑ0. Since the
interaction proceeds via a photon with spinJ = 1 the amplitude for scattering over an
angle � is then given by the rotation matrices1.

dj
m0m (� ) �

D
jm 0je� i�J y jjm

E

where they-axis is perpendicular to the interaction plane.
In the example we havej = 1 and m; m0 = � 1

d1
1 1(� ) = d1

� 1� 1(� ) =
1
2

(1 + cos� )

d1
1� 1(� ) = d1

� 1 1(� ) =
1
2

(1 � cos� )

From this we can see that:

d�
d


�
e�

L e+
R ! � �

L � +
R

�
=

� 2

4s
(1 + cos� )2 =

d�
d


�
e�

Re+
L ! � �

R � +
L

�

d�
d


�
e�

L e+
R ! � �

R � +
L

�
=

� 2

4s
(1 � cos� )2 =

d�
d


�
e�

Re+
L ! � �

L � +
R

�

Indeed the unpolarised cross section is obtained as the spin-averaged sum over the
allowed helicity combinations (see lecture 8): 1

4 � [(1) + (2) + (3) + (4)] =

d�
d


unpol

=
1
4

� 2

4s
2

h
(1 + cos� )2 + (1 � cos� )2

i
=

� 2

4s

�
1 + cos2 �

�
:

1See H&Mx2.2:

e� i�J 2 jj m i =
X

m 0

dj
m m 0(� ) jj m 0i

and also appendix H in Burcham & Jobes
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Now we go back to the , Z scattering. We have the individual contributions of the
helicity states, so let us compare the expressions for the matrix-elementsM  and M Z :

M  = �
e2

s

h �
 L m  �  L m

�
+

�
 R m  �  R m

� i
�

h �
 L e  �  L e

�
+

�
 R e  �  R e

� i

M Z = �
g2

4 cos2 � w

1
s � M 2

Z

h
Cm

L

�
 L m  �  L m

�
+ Cm

R

�
 R m  �  R m

� i

�
h

Ce
L

�
 L e  �  L e

�
+ Ce

R

�
 R e  �  R e

� i

At this point we follow the notation of Halzen and Martin and introduce:
e�

L;R (p) �  L;R e(p), e+
L;R (p) �  R;L e(� p), � �

L;R (p) �  L;R m (p), � +
L;R (p) �  R;L m (� p).

Since the helicity processes do not interfere, we can see (Exercise 40 (a)) that:

d�
d
 ;Z

�
e�

L e+
R ! � �

L � +
R

�
=

� 2

4s
(1 + cos� )2 � j1 + r C m

L Ce
L j2

d�
d
 ;Z

�
e�

L e+
R ! � �

R � +
L

�
=

� 2

4s
(1 � cos� )2 � j1 + r C m

R Ce
L j2

with:

r =
g2

e2

1
4 cos2 � w

s
s � M 2

z
=

p
2GF M 2

Z

e2

s
s � M 2

Z
:

where we used that:

GFp
2

=
g2

8M 2
W

=
g2

8M 2
Z cos2 � w

:

Similar expressions hold for the other two helicity con�gurations.
We note that there is a strange behaviour in the expression of thecross section of

the Z-propagator. When
p

s ! MZ the cross section becomes1 . In reality this does
not happen (that would be unitarity violation) due to the fact that the Z-particle itself
decays and has an intrinsic decay width �Z . This means that the cross section has a
Breit Wigner resonance shape. We are not going to derive it, butrefer to the literature:
e.g. Perkins2.

Alternatively, a simple argument followed by H&M x2.10 goes as follows: The wave
function for a non-stable massive particle state is:

j (t)j2 = j (0)j2 e� � t with � the lifetime :

 (t) � e� iMt e� �
2 t with M the mass:

2Perkins: Introduction to high energy Physics 3rd ed. x4.8.
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As function of the energy of the e+ e�

pair the state is described by the Fourier
transform:

� (E) =
Z

 (t)eiEt dt �
1

E � M + ( i � =2)
:

Such that experimentally we would observe:

j� (E)j2 =
A

(E � M )2 + (� =2)2 ;

the so-called Breit-Wigner resonance shape.

Breit Wigner

A=10
M=20
G=2.5

E

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40

In the propagator for the z-boson we replace:

1
s � M 2

Z
!

1

s �
�
MZ � i � Z

2

� 2 =
1

s �
�
M 2

Z � � 2
z

4

�
+ iM Z � Z

We observe two changes:

1. The maximum of the distribution shifts from M 2
Z ! M 2

Z � � 2
Z
4 .

2. The expression will be �nite because of the term/ MZ � Z

For our expressions in the processe� e+ ! ; Z ! � � � + it means that we only replace:

r =

p
2GF M 2

Z

e2
�

s
s � M 2

Z
by r =

p
2GF M 2

Z

e2
�

s

s �
�
MZ � i � Z

2

� 2

The total unpolarized cross section �nally becomes the average over the fourL, R
helicity combinations. Inserting \lepton universality" Ce

L = C �
L ; Ce

R = C �
R and therefore

also: Ce
V = C �

V ; Ce
A = C �

A , the expression becomes (by writing it out):

d�
d


=
� 2

4s

h
A0

�
1 + cos2 �

�
+ A1 (cos� )

i

with A0 = 1 + 2 Re(r ) C2
V + jr j2

�
C2

V + C2
A

� 2

A1 = 4 Re(r ) C2
A + 8jr j2C2

V C2
A

In the Standard Model we have:CA = � 1
2 and CV = � 1

2 + 2 sin2 � .
The general expression fore� e+ ! ; Z ! � � � + is (assuming seperate couplings for

initial and �nal state):

A0 = 1 + 2 Re(r ) Ce
V Cf

V + jr j2
�
Ce

V
2 + Ce

A
2
� �

Cf
V

2
+ Cf

A
2
�

A1 = 4Re(r ) Ce
A Cf

A + 8jr j2 Ce
V Cf

V Ce
A Cf

A
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To summarize, on theamplitude levelthere are two diagrams that contribute:

M  : 

e+

e�

� +

� �

M Z :
Z

e+

e�

� +

� �

Introducing the following notation:

d�
d


[Z; Z ] = Z � Z / j r j2

d�
d


[Z ] =  � Z / Re(r )

d�
d


[;  ] =  �  / 1

Explicitly, the expression is:

d�
d


=
d�
d


[;  ] +
d�
d


[Z; Z ] +
d�
d


[; Z ]

with
d�
d


[;  ] =
� 2

4s

�
1 + cos2 �

�

d�
d


[Z; Z ] =
� 2

4s
jr j2

� �
Ce

V
2 + Ce

A
2
� �

Cf
V

2
+ Cf

A
2
� �

1 + cos2 �
�

+ 8Ce
V Cf

V Ce
A Cf

A cos�
�

d�
d


[; Z ] =
� 2

4s
Rejr j

h
Ce

V Cf
V

�
1 + cos2 �

�
+ 2Ce

A Cf
A cos�

i

Let us take a look at the cross section close to the peak of the distribution:

r /
s

s �
�
M z � i � Z

2

� 2 =
s

s �
�

M 2
z � � 2

Z
4

�

+ iM Z � Z

The peak is located ats0 = M 2
Z � � 2

Z
4 .

In Exercise 40 (b) we show that:

Re(r ) =
�

1 �
s0

s

�

jr j2 with jr j2 =
s2

�

s �
�

M 2
Z � � 2

Z
4

�� 2

+ M 2
Z � 2

Z

This shows that the interference term is 0 at the peak.

In that case (i.e. at the peak) we have for the cross section terms:

A0 = 1 + jr j2
�
Ce

V
2 + Ce

A
2
� �

Cf
V

2
+ Cf

A
2
�

A1 = 8jr j2
�
Ce

V Ce
A Cf

V Cf
A

�
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The total cross section (integrated overd
 ) is then:

� (s) =
G2

F M 4
Z

�

s �
�

M 2
Z � � 2

Z
4

�� 2

+ M 2
Z � 2

Z

�
s

6�

�
Ce

V
2 + Ce

A
2
� �

Cf
V

2
+ Cf

A
2
�

:
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Figure 12.4: left: The Z-lineshape as a function of
p

s. right: The Lineshape parameters
for the lowest order calculations and including higher ordercorrections.

12.2 Decay Widths

We can also calculate the decay width:

�
�
Z ! f f

�

f

f

which is according Fermi's golden rule:

�
�
Z ! f f

�
=

1
16�

1
MZ

�
�
�M

�
�
�
2

=
g2

48�
M z

cos2 � w

�

Cf
V

2
+ Cf

A
2
�

=
GF

6
p

2

M 3
Z

�

�

Cf
V

2
+ Cf

A
2
�

Using this expression for �e � �( Z ! e+ e� ) and � f � �( Z ! f f ) we can re-write:

� (s) =
12�
M 2

Z
�

s
�

s �
�

M 2
Z � � 2

Z
4

�� 2

+ M 2
Z � 2

Z

� � e� f :
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Close to the peak we then �nd:

� peak �
12�
M 2

Z

� e� f

� 2
Z

=
12�
M 2

Z
BR(Z ! ee) � BR(Z ! f f )

Let us now �nally consider the case whenf = q (a quark). Due to the fact that
quarks can be produced in 3 color-states the decay width is:

�( Z ! qq) =
GF

6
p

2

M 3
Z

�

�

Cf
V

2
+ Cf

A
2
�

� NC

with the colorfactor NC = 3. The ratio between the hadronic and leptonic width:
Rl = � had=� lep can be de�ned. This ratio can be used to test the consistency of the
standard model by comparing the calculated value with the observed one.

12.3 Forward Backward Asymmetry

The forward-backward asymmetry can be de�ned using the polar angle distribution. At
the peak and ignoring the pure photon exchange:

d�
dcos�

/ 1 + cos2 � +
8
3

AF B cos�

This de�nes the forward-backward asymmetry with:

A0;f
F B =

3
4

AeA f where A f =
2Cf

V Cf
A

C2
V + C2

A
The precise measurements of the forward-backward asymmetry can be used to determine
the couplingsCV and CA .
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0.014

0.018

0.022

20.6 20.7 20.8 20.9

Rl

A
0,

l

fb

68Y  CL

l+l-

e+e-
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t +t -
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mt

mH

combined in plots with SLD resultsFigure 12.5: left: Test of lepton-universality. The leptonicA fb vs. Rl . The contours
show the measurements while the arrows show the dependency on Standard Model
parameters. right: Determination of the vector and axial vector couplings.
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12.4 The Number of Light Neutrino Generations

Since the total decay width of theZ must be equal to the sum of all partial widths the
following relation holds:

� Z = � ee + � �� + � � � + 3� uu + 3� dd + 3� ss + 3� cc + 3� bb + N � � � ��

From a scan of theZ-cross section as function of the center of mass energy we �nd:

� Z � 2490 MeV

� ee � � �� � � � � = 84 MeV CV � 0 CA = �
1
2

� �� = 167 MeV CV =
1
2

CA =
1
2

� uu � � cc = 276 MeV CV � 0:19 CA =
1
2

� dd � � ss � � bb = 360 MeV CV � � 0:35 CA = �
1
2

(Of course � tt = 0 since the top quark is heavier than theZ .)

N � =
� Z � 3� l � � had

� ��
= 2:984� 0:008 :

Figure 12.6: TheZ-lineshape for resp.N � = 2; 3; 4.
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Figure 12.7: Standard Model �t of the predicted value of the Higgs boson.
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Exercise 40:

(a) Show how the unpolarised cross section formula for the processe+ e� ! Z;  ! � + � �

can be obtained from the expression of the helicity cross sections in the lecture:

d�
d


�
e�

L=R e+
R=L ! � �

L=R � +
R=L

�
=

� 2

4s
(1 � cos� )2

�
�
�1 + r C e

L=R C �
L=R

�
�
�
2

(b) Show, using the expression ofr from the lecture, that close to the peak of the
Z-lineshape the expression

Re(r ) =
�

1 �
s0

s

�

jr j2

with s0 = M 2
z � � 2

z=4 holds.

(c) Show also that at the peak:

� peak �
12�
M 2

z

� e� �

� 2
Z

(d) Calculate the relative contribution of the Z-exchange and the exchange to the
cross section at theZ peak.
Usesin2 � W = 0:23, M z = 91 GeV and � Z = 2:5 GeV.

(e) The actual line shape of theZ-boson is not a pure Breit Wigner, but it is asym-
metrical: at the high

p
s side of the peak the cross section is higher then expected

from the formula derived in the lectures.
Can you think of a reason why this would be the case?

(f) The number of light neutrino generations is determined from the \invisible width"
of the Z-boson as follows:

N � =
� Z � 3� l � � had

� �

Can you think of another way to determine the decay rate ofZ ! � �� directly?
Do you think this method is more precise or less precise?



Appendix A

Variational Calculus

This appendix is a short reminder of variational calculus leading to the Euler Lagrange
equations of motion. Let us assume that we have a cartesian coordinate system with
coordinatesx and y, and consider the distance between an initial position (x0; y0) and a
�nal position ( x1; y1). We ask the simple question: \What is the shortest path between
the two points in this space?"

Assume that the path of the particle can be represented asy = f (x) = y(x). So
y(x0) = y0 and y(x1) = y1.

Consider now the distancedl of two in�nitesimal close points:

dl =
q

dx2 + dy2 =

vu
u
u
t dx2

0

@1 +

 
dy
dx

! 2
1

A =
q

1 + y02dx

with y0 = dy=dx.
The total length from (x0; y0) to (x1; y1) is:

l =
Z x1

x0

dl =
Z x1

x0

q
1 + y02dx :

The problem is to �nd the function y(x) for which the l is minimal. The variational
principle states that for the shortest path this integral shouldbe stationary for possible
di�erent paths; i.e. for di�erent functions of y(x).

To �nd the solution we shall look at a more general case. Assume that the path
length is given by the integral:

I =
Z x1

x0

f (y; y0)dx :

In the above example we havef (y; y0) = f (y0) =
p

1 + y02.
According to the variational principle the physics path is obtained via �I = 0. First

we consider the in�nitesimal change

�f =
@f
@y

�y +
@f
@y0

�y 0
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where�y 0 = �
�

dy
dx

�
= d

dx (�y ).
So we �nd:

�f =
@f
@y

�y +
@f
@y0

d
dx

(�y )

and the variation of the integral is:

�I =
Z x1

x0

2

6
6
6
6
4

@f
@y

�y
| {z }

(1)

+
@f
@y0

d
dx

(�y )
| {z }

(2)

3

7
7
7
7
5

dx :

The 2-nd term can be integrated in parts:

(2) = �
Z x1

x0

d
dx

@f
@y0

�y dx +

"
@f
@y0

�y

#x1

x0| {z }
=0

The second term is zero due to the boundary conditions (the initial and �nal point are
�xed: �y = 0.)
Therefor a the stationary path requires:

�I =
Z x1

x0

"
@f
@y

�
d

dx

 
@f
@y0

!#

�y (x) dx = 0 :

This is obtained when the integrand is 0, or:

@f
@y

�
d

dx
@f
@y0

= 0

For the straight line example above we hadf (y0) =
p

1 + y02, such that @f=@y= 0 and
@f=@y0 = y0=

p
1 + y02. So the variational principle states that:

d
dx

 
y0

p
1 + y02

!

= 0

or that y0 is a constant (dy=dx= a) and the solution is therefore:y = ax + b.

In mechanics involving conservative forces we apply the stationary action principle
to the Lagrangian function (L ), which depends on the generalized coordinates (qi ; _qi ):

L (qi ; _qi ) = T � V

such that we write for the equation of motion:

d
dt

@L
@_qi

=
@L
@qi

:

Hamilton's principle states that the action integral

I =
Z t1

t0

L (qi ; _qi ) dt

is stationary: �I = 0.



Appendix B

Some Properties of Dirac Matrices
� i and �

This appendix lists some properties of the operators� i and � in the Dirac Hamiltonian:

E = i
@
@t

 =
�
� i~� � ~r + �m

�
 

1. � i and � are Hermitean.
They have real eigenvalues because the operatorsE and ~p are Hermitean. (Think
of a plane wave equation: = Ne� ip � x �

.)

2. T r(� i ) = T r(� ) = 0.
Since � i � = � �� i , we have also: � i � 2 = � �� i � . Since � 2 = 1, this implies:
� i = � �� i � and thereforeT r(� i ) = � T r(�� i � ) = � T r(� i � 2) = � T r(� i ), where
we used thatT r(A � B) = T r(B � A).

3. The eigenvalues of� i and � are � 1.
To �nd the eigenvalues bring� i ; � to diagonal form and since (� i )2 = 1, the square
of the diagonal elements are 1. Therefore the eigenvalues are � 1. The same is
true for � .

4. The dimension of� i and � matrices is even.
The Tr(� i ) = 0. Make � i diagonal with a unitary rotation: U� i U� 1. Then, using
again T r(AB ) = T r(BA ), we �nd: T r(U� i U� 1) = T r(� i U� 1U) = Tr(� i ). Since
U� i U� 1 has only +1 and � 1 on the diagonal (see 3.) we have:T r(U� i U� 1) =
j (+1) + ( n � j )( � 1) = 0. Therefore j = n � j or n = 2j . In other words: n is
even.
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