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Abstract

This MQP examines the teaching practices concerning group theory in chemistry and
chemistry in group theory at WPI as well as other colleges. The influence and importance of the
interaction of the two subjects on each other is exemplified by its prevalence in academic texts as
well as a recent research article in the mathematical sciences with applications in chemistry and a

recent chemistry experiment, whose analysis used group theory as a tool.
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Chapter 1: Introduction

Felix Klein in his Erlangen program in 1872 suggested studying the intrinsic properties of
an object by studying the group of transformation that leaves the object unchanged. This basic
idea profoundly influenced group theory.

Group theory is part of algebra. In standard undergraduate education in mathematical
sciences, group theory is introduced within abstract algebra. In contrast to the calculus sequence,
applications are not the main focus of the algebra sequence. Chemistry provides natural
applications for group theory in the spirit of Felix Klein, but these are not always taught.

This project looks explicitly for applications of group theory to chemistry. To this end
we examine how group theory is taught at WPI and other comparable universities. Moreover,
we examine whether or not group theory is found in chemistry courses. What level of
mathematics are chemistry majors required to know?

Do there exist new publications in the mathematical sciences with applications of group
theory to chemistry? Do chemists use group theory in their work? We can confidently answer

yes to both questions after examining the literature.



Chapter 2: Group Theory in Chemistry at WPI

2.1 MA3823: Group Theory

All undergraduate students majoring in mathematical sciences at WPI are required to take
either Group Theory (MA3823) or Rings and Fields (MA3825). Both courses are offered once a
year alternating years. The entry in the WPI course catalog for Group Theory is the following:

This course provides an introduction to one of the major areas of modern algebra. Topics
covered include: groups, subgroups, permutation groups, normal subgroups, factor
groups, homomorphisms, isomorphisms and the fundamental homomorphism theorem.
(WPI Mathematical Sciences Department Course Catalog 2007-2008)

I took Group Theory in fall of 2006 with a visiting professor named Jason Williford. The
primary text was (Gallian, 2004) by Joseph A. Gallian.
According to the course syllabus:

The aim of this course is to introduce students to some of the basic concepts and techniques of
abstract algebra. This will be achieved through a study of an algebraic structure called a group,
an algebraic object with one associative operation that satisfies certain properties...The
symmetries of a mathematical object also form a group; for this reason group theory can be
thought of as a study of symmetry from an algebraic perspective. (WPI Mathematical Sciences
Department Course Catalog 2007-2008)

The major topics covered were:

e Functions e Isomorphisms

e Finite Groups and Subgroups e Automorphisms

e Modular Arithmetic e Homomorphisms

e Subgroup Tests e Innermorphisms

e Cyclic Subgroups e Group Stabilizers

e (Center of a Group e Orbit Theory

e Cyclic Groups e External and Internal Direct

e Group Generators Products

e Equivalence Relations e Normal Subgroups

e Permutations and e Factor Groups
Transpositions



An introductory concept of the course was to classify the symmetries of a square. A
square is an object which is simple to describe and manipulate. We can easily imagine it as an
ideal physical structure with its points, edges and faces marked and colored, so that we can keep
track of rotations, which are orientation preserving transformations, and reflections, which are
orientation reversing transformations. We see that studying a geometric object as simple as a
square, we get to comprehend quite a few abstract concepts. The dihedral group can be defined
as the group of symmetries of a regular -gon, and such a geometric definition is easier to grasp

because it is a very visual as opposed to an abstract definition. We learned that the dihedral

group ( )was definedas = { } ( and Dboth integers) where:
e The ( ) causes no change
e The () (also called ) where

{1, } is a counterclockwise rotation of (360° ) about a rotation axis.
When = , (since a rotation of 360° is the identity operation)

e The ( ) exchanges left and right, as if each point had moved
perpendicularly through the plane to a position exactly as far from the plane as
when it started. If iseven,( 2 ) 2=

e A () (sometimes called an )
requires a rotation of (360°/ ) followed by reflection through a plane

perpendicular to the axis of rotation.

At the end of the term we had the option to turn in a research paper, worth 10% of our
grade, which looked at applications of group theory to other areas such as representation theory,

character theory, chemistry, physics, classification theorem, coding theory, and matrix groups.



For my research paper, I chose to look at applications of group theory to chemistry because of
my strong chemistry background.

Motivated by my experiences in chemistry, the first connection to group theory that came
to my mind was the concept of symmetry groups and symmetry operations. If there was group
theory representation for regular polygons, could there also be for atoms and molecules? After
some preliminary research looking into specific applications of group theory to chemistry I
decided to look primarily at symmetry operations of simple linear molecules from both a
geometric and group theoretical approach. I chose a basic linear molecule Beryllium Chloride

(BeCl,) which has the following molecular representations:

:Cl:Be:Cl:

)

Observing figure (1), the Lewis structure of BeCl,, each chlorine atom has seven valence
electrons and the central beryllium atom has two valence electrons. As such, beryllium forms a
single polar covalent bond with each chlorine atom. Looking at the two ends of the molecule, it
is easy to see that each chlorine atom has three pairs of valence electrons that are not in bonds.
Since electrons all carry the same negative (-) charge, it is inherent in their nature to repel each
other. As such, the chlorine atoms will be the optimal distance apart that the molecule allows.
In this case, to maximize distance, the atoms form a 180° angle with the centralized atom as a

vertex. Looking at figure (2) it is very easy to see the symmetry operations for BeCl,:



() arotation around a central horizontal C,, axis

( areflection about a central and then

( acomposition of ( ) and ( ) or a rotation followed by a reflection.
The identity operation ( ) is also a symmetry operation.




2.2 CH3410: Principles of Inorganic Chemistry
At WPI there is only one chemistry course that looks at applications of group theory.

(CH3410) is offered every year and is required for

undergraduate chemistry, chemical engineering, and biochemistry majors. There are no stated

prerequisites to take the course however it is very unlikely that anyone outside of the three

departments would take it. It only assumes you have taken introductory and transition courses in

chemistry as you would have to in these disciplines. The course description, as presented in the

course catalog, is the following:

This course provides the fundamental understanding of atomic, molecular and solid state
structures and properties. Orbital structures of atoms, symmetry of molecules and point groups
are used to understand chemical bonding and reactions. Various acid-base concepts are explored
to analyze the acidity of cations and basicity of anions, solubility and precipitations of inorganic
compounds, and metal-ligand binding affinities. Redox properties are discussed using Pourbaix
diagrams. Thermodynamic stabilities of inorganic species are discussed using acid-base and
redox concepts and thermochemical analyses are used to analyze chemical reactivity at atomic,
molecular, and solid state level. (WPI Chemistry and Biochemistry Department Coure Catalog
2007-2008)

The current text used is Inorganic Chemistry 3™ Edition (Miessler, 2003) by Gary L.

Miessler and Donald A. Tarr. The fourth chapter is titled O 4 and is 36
pages long. The first section of the chapter looks specifically at symmetry elements and
operations. The group theory material from this chapter is very introductory and does not require
an advanced knowledge of either field but just a basic knowledge of geometry. It states that:
“Molecules or any other objects may contain such as mirror planes, axes of
rotation, and inversion centers. The actual reflection, rotation, or inversion is called the

... If a symmetry operation yields a molecule that can be distinguished from

the original in any way, then that operation is a symmetry operation of the molecule.”
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(Miessler, 2003) This text defines the symmetry operations just as any regular group theory
textbook would.

The second section of this chapter is where the application of group theory is first
mentioned: “Each molecule has a set of symmetry operations that describes the molecule’s

overall symmetry. This set of symmetry operation is called the of the molecule.
ot o# , the mathematical treatment of the properties of groups, can be used to determine
the molecular orbitals, vibrations, and other properties of the molecule.” (Miessler, 2003) The
rest of the section is devoted to showing different examples of point groups and how to classify
molecules based on their degrees of symmetry.

The more relevant application of group theory is in the third section titled
$ I' " . Inaddition to basic group theory definitions, the section goes on to
give detailed definitions and examples of the following components of group theory: matrix
representations of symmetry operations, reducible and irreducible representations, character
tables, and transformation matrices. All of these components each have their own specific
chemical examples and applications. The final section of the chapter goes on to mention these
applications and examples.

This chapter does not go into great detail about group theory, since this is a chemistry
textbook; however it mentions all the relevant applications of group theory to chemistry. When
defining specific elements of group theory the text provides thorough and accurate mathematical
definitions while also emphasizing their chemical applications. Overall, chemistry oriented

students taking inorganic chemistry using this specific textbook will have a fairly basic and easy

introduction to group theory regardless of their math background.

11



Chapter 3: College Courses in Group Theory in
Chemistry

There are several prominent engineering universities, both nationwide and abroad, that
have classes dedicated to presenting and teaching applications of group theory to chemistry.
These courses are both at the undergraduate and graduate levels. At nearly all the said
universities, the courses were chemistry courses that were in the more advanced stages of a
degree in chemistry or chemical engineering. Therefore these courses had many prerequisite
chemistry courses. However not many of these courses had any real semblance of a math
prerequisite which would suggest that the group theory concepts are taught as not only

applications, but a very elementary introduction as well.

3.1 Undergraduate Courses

3.1.1 Massachusetts Institute of Technology (MIT), Cambridge,
Massachusetts

At MIT, the top ranked engineering universities in the country, all undergraduate

chemistry students can take 5.04: . This class requires that
the student has taken the previous course %
& . However, despite these prerequisites,

this course is classified as a transition course. This course, taught as recently as the fall of 2007,
is described by the professor as a:

Systematic presentation of the chemical applications of group theory. Emphasis on the formal
development of the subject and its applications to the physical methods of inorganic chemical
compounds. Against the backdrop of electronic structure, the electronic, vibrational, and
magnetic properties of transition metal complexes are presented and their investigation by the
appropriate spectroscopy described. (Massachusetts Institute of Technology Chemistry
Department Course Catalog 2007-2008)

12



Specifically, the course syllabus presents the following group theory concepts:

Symmetry elements and operations

Operator properties and mathematical groups
Similarity transforms , classes and representations
Characters and character tables

Molecular point groups

After these concepts are presented, the course diverges into more chemistry specific material

looking into the chemical applications of the previous material covered.

3.1.2 Stanford University, Stanford, California

At Stanford, another of the top ranked engineering school in the nation, undergraduate

chemistry students are required to take CHEM 153: This course is

described in the course catalog as:

The theoretical aspects of inorganic chemistry. Group theory; many-electron atomic theory;
molecular orbital theory emphasizing general concepts and group theory; ligand field theory;
application of physical methods to predict the geometry, magnetism, and electronic spectra of
transition metal complexes. (Stanford Bulletin: Chemistry Department 2007-2008)

Students desiring to take this course are required to have CHEM 151:

as well as CHEM 171: . The latter doesn’t mention group theory

as one of the course components however it is interesting to note that this class has a

mathematics prerequisite specifically MATH 51: " " ( " " . Although this is not

group theory, this was the first chemistry course with a math prerequisite.

13



3.13 Arizona State University, Mesa, Arizona

At Arizona State’s polytechnic campus, undergraduate chemistry students are required to
take CHM545:) " " in which the second major topic covered is “Group Theory
for Chemistry.” (CHM 545 Quantum Chemistry) This topic specifically looks at the following
mathematical components: basics of linear algebra, symmetry operations and modules, point
groups, matrix representation of symmetry operations, and finally characters and character
tables. The required texts for this class are appropriately both advanced chemistry texts:

Symmetry and Spectroscopy (Bertolucci, 1989) by Daniel Harris and Michael D. Bertolucci as

well as Quantum Mechanics in Chemistry (Schatz, 2002) by George C. Schatz and Mark A.

Ratner. Neither of these texts have very explicit sections on group theory. Nonetheless, the
professor’s willingness to deviate from the text to introduce specific group theory concepts

shows its importance to the course and the subject as a whole.

3.1.4 Texas Agricultural and Mechanical (Texas A&M), College Station, Texas
At Texas A&M chemistry students can take Chemistry 673: N
. This advanced chemistry course had the following course description:

The course will provide an introduction to the fundamentals and applications of the
theory of group representation in chemistry. After an introduction to the abstract theory
of groups is given, applications of symmetry groups will constitute the major emphasis of
the course. The student will be encouraged to develop both the formal skills of using
group theory to “grind out answers” and to acquire some intuitive and pictorial sense of
“what it all means”... (Chemistry 673 Symmetry and Group Theory in Chemistry)

The main text uses is F.A. Cotton’s Chemical Applications of Group Theory (Cotton, 1990) and

the course is broken down in the following manner:

I. Basic Properties of Groups and Symmetry Groups * 2 weeks
e Multiplication of elements closure
e existence of an identity element and reciprocal

14



associative law
noncommutation of operations
multiplication tables
subgroups and supergroups
Symmetry groups
symmetry elements and operations
assigning point groups (flow chart)
examples of subgroups
abelian groups, cyclic groups
o translation groups and crystals — introduction to k-space
e Similarity transformations and classes
o similarity transformations
o geometrical significance of classes of symmetry operators
II. Group Representations and Physical Implications * 3-4 weeks
Matrices as representations for symmetry operations
review of vector and matrix properties; matrix operations
some special properties of matrices
character (trace) of a matrix
orthogonal matrices, matrices as geometric transformation operators
inverses
Group representations
reducible and irreducible representations
the “Great Orthogonality Theorem” and its consequences
character tables
cyclic groups
translation groups (just special cyclic groups)
Group theory as a tool in quantum mechanics
operators in quantum mechanics
the importance of operators that commute with the Hamiltonian
symmetry operators as special cases of commuting operators
the direct product and its uses
bases for group representations and nonzero matrix elements
transition probabilities - symmetry aspects
Symmetry-Adapted Linear Combinations (SALCs) and Bases for Irreducible
Representations.
projection operators - “complete” and “incomplete”
projection operators in the construction of SALCs
symmetry patterns, SALCs, and the intuitive nature of bases for irreducible
representations - a pictorial survey (Chemistry 673 Symmetry and Group
Theory in Chemistry)

O O O O

The reason for this particular class structure is mainly due to the text however the class also

looks at selected applications of group theory including: Molecular Oribtal Theory, Band

15



Theory, and Vibration Spectra for six to seven weeks which uses ideas and concepts from a
second text, the aforementioned . As the course title suggests, this

course is dedicated to investigating and understanding chemical applications of group theory.

3.1.5 University of California-Berkeley, Berkeley, California
At UC-Berkeley, another highly ranked engineering school, chemistry students can enroll
in Chemistry 104A: . According to the professor:

“This course is intended primarily as an introduction to inorganic chemistry for undergraduate
students. Topics covered will include: atomic structures, periodic trends, symmetry and group
theory, inorganic solids, molecular orbital theory, molecular structure, acid-base chemistry, and
band theory.” (Chemistry 104A, 2007)

Although inorganic chemistry is a relatively advanced course, this particular course appears

much earlier in the course sequence that at other schools. Although symmetry and group theory

is only one of many elements of this course, the text is titled Molecular Symmetry and Group

Theory (Carter, 1998).

3.1.6 Michigan Technological University, Houghton, Michigan

At Michigan Tech, undergraduate chemistry students nearing the end of their degree or
graduate students can take Chemistry 5540: N 4 . This
course has the following course description: “The predicted power of group theory in chemistry
is developed through theory and detailed applications. Emphasizes group theoretical
applications to molecular orbital theory, orbital symmetry, ligand field theory, and vibrational

spectroscopy.” (Michigan Tech Graduate Course Descriptions 2007)

16



3.1.7 Princeton University, Princeton, New Jersey
At Princeton, undergraduate chemistry students can take Chemistry 505: ! " #

. This course uses Symmetry through the Eyes of a Chemist (Hagittai, 1986) by Istvan

and Magdolna Hargittai as the primary text. This book is very chemistry oriented and does not
dedicate a lot to group theory concepts. As such, the course also includes much more
supplemental reading material including Cotton’s " # . The
course description includes the following components of chemical applications of group theory:

e Examples of symmetry groups: point groups for molecular symmetry, permutation groups for
counting isomers and constructing wave functions, rotation groups and angular momenta

e (lassification of rigid molecules into point groups. Distinguishing isomers, geometrical and
stereo-isomers.
e Principles of Group Theory:
o matrix representations of groups; subgroup structure and faithful representations;
o character tables, projection operators, Orthogonality theorem, direct products
o many particle wave functions (Chemistry 505: Group Theory in Chemistry)

3.1.8 University College London, London, England

Finally, looking overseas at University College London, undergraduate chemistry
students can take Chemistry 2102: Principles of Inorganic Chemistry. This class uses Inorganic

Chemistry (Shriver, 2006) by Duward Shriver and Peter Atkins as well as Concepts and Models

of Inorganic Chemistry (Douglas, 1994) by Bodie Douglas, Darl McDaniel, and John Alexander.

The course is divided up into four main components the first of these being dedicated to an
“Introduction to the Principles and Applications of Group Theory.” (UCL Chemistry) This

section is broken down in the following way:

17



Part 1: Revision of Symmetry Operations, o Character tables
Symmetry Elements and Point Groups

Part 3: Group Theory and Chemical Bonding
Part 2: Group Theory: Some Definitions

o Construction of a qualitative

o Definition of a group; rules that molecular orbital energy level
must be satisfied by the elements of diagram for water, including use of
a group. the reducing formula and the

o Group multiplication tables projection operator for the

o Abelian and non-Abelian groups construction of Symmetry Adapted

o Matrix representations of groups, Linear Combinations (SALCs)
including matrix multiplication o Construction of qualitative

o Characters of matrix representations molecular orbital energy level

o Irreducible representations diagrams for ammonia and MH6.

o Reduction of representations; direct (UCL Chemistry)
sums

3.1.9 Wayne University, Detroit, Michigan

At Wayne University, graduate students pursuing a master’s degree in chemistry can
enroll in Chemistry 6040: o o# . This graduate course is
described as: “Symmetry in chemical systems, development and use of character tables and
applications of group theory to structure, bonding, spectroscopy and reactions.” (Chemistry
Courses (CHM)) Since the class is at the graduate level, there are more than a few prerequisite

chemistry classes. No text is specifically mentioned in the course outline.

3.1.10 Case Western Reserve University, Cleveland, Ohio

Another graduate course offered can be found at Case Western Reserve University where
graduate chemistry students can take Chemistry 415: " #
This course is described as “Experimental and semi-empirical treatments of the structures and
bonding in chemical systems, based on presentation of symmetry relationships and the theory of
point and space groups.” (Graduate Chemistry Courses) No specific text is mentioned in the

course outline.

18



Chapter 4: Literature Analysis

4.1 Group Theory in Chemistry Texts

To gain a better understanding of how group theory is presented in college chemistry
courses it would be the most logical to look at the primary text books used. Looking at many
different texts would reveal a wide spectrum of how different authors in academia present
advanced math concepts, specifically group theory and abstract algebra, to chemistry students
and conversely. Also, common elements of different texts can help to highlight and understand

which specific concepts are most critical to the subject.

4.1.1 Chemical Applications of Group Theory 3rd Edition (Cotton, 1990)
+ Texas A&M University, College Station, TX

Frank Albert Cotton was an award winning researcher and a distinguished member of the
chemistry community. He was the author of over 1700 articles and in addition this text has been
credited with “...introducing generations of chemists to the group theoretical analysis of bonding
and spectroscopy.” (F. Albert Cotton) According to the preface:

This book is the outgrowth of a one-semester course which has been taught for several
years at the Massachusetts Institute of Technology to seniors and graduate students in
chemistry. The treatment of the subject matter is unpretentious in that I have not
hesitated to be mathematically unsophisticated, occasionally unrigorous, or somewhat
prolix, where I felt that this really helps to make the subject more meaningful and
comprehensible for the average student. By the average student, I mean one who does
not aspire to be theoretician but who wants to have a feel for the strategy used by
theoreticians in treating problems in which symmetry properties are important and to
have a working knowledge of the more common and well established techniques.
(Cotton, 1990)

19



Appropriately, his book is the primary text used at both the Massachusetts Institute of
Technology (MIT) as well as where he taught, Texas A&M. His admonition in the preface is
very interesting because he is admitting that he is “mathematically unsophisticated” and as such
implicative that his students will be the same if not more unrefined in mathematics.

From an organizational standpoint, Cotton dedicates many pages to establishing a solid
foundation of basic introductory group theory principles to transition to more advanced chemical
applications. In total, Cotton offers three chapters (94 pages) dedicated to group theory:

e Chapter 2: Definitions and Theorems of Group Theory
o The defining properties of a group
o Some examples of groups
o Subgroups
o Classes
e  Chapter 3: Molecular Symmetry and the Symmetry Groups
o Symmetry elements and operations
Symmetry planes and reflections
The inversion center
Proper axes and proper rotations
Improper axes and improper rotations
Products of symmetry operations
Equivalent symmetry elements
General relations among symmetry elements and operations
o Classes of symmetry operations
e  Chapter 4: Representations of Groups
o Representations of groups
o The “Great Orthogonality Theorem” and its consequences
o Character tables
o Representations for cyclic groups

O O O O O O O

4.1.2 Molecular Aspects of Symmetry (Hochstrasser, 1966)
$ b , University of Pennsylvania, Philadelphia, PA

is a chemistry text that investigates how mathematical
concepts can be applied to help understand different chemical concepts. Specifically:

The contents of this book have been utilized in two courses given by the author. The first
was a one-semester course for seniors at the University of British Columbia; it was clear
that good undergraduates were perfectly capable of handling elementary group theory

20



and its application to simple quantum chemical problems...The second course was
directed at first and second-year graduate students of physical chemistry at the University
of Pennsylvania, for which the prerequisites were a previous or current year of quantum
chemistry...It has been this author’s experience that the study of group theory helps
students to develop, understand, and unify their previous, or concurrent, expeditions into
chemical theory. (Hochstrasser, 1966)

The author includes three detailed chapters presenting important group theory concepts which
then lead to chemical applications. These chapters had the following topics:

The C C(,C ,S,D D ,andD Groups
Homomorphism

Isomorphism

Subgroups

Invariant Subgroups

Left and Right Cosets

Factor Groups

Characters and classes

Reducible representations of groups
Permutation Groups

Internal Direct Product

External Direct Product

Linear Operators

Coupled with every mathematical concept is a directly relevant chemical example. More often
than not, each concept is explained not only with a detailed definition and chemical relevance,
but also with some sort of accompanying graphic. This text certainly requires no advanced math

background and only a rather basic understanding of chemistry as well.

4.1.3 Svmmetrv through the Eves of a Chemist (Hagittai, 1986)

(- , , Hungarian Academy of Sciences, Belfast, Hungary

is an Inorganic Chemistry textbook used by
many different universities including ones as prestigious as Princeton University. The authors
are members of the Hungarian Academy of Sciences’ Structural Chemistry Research Group.
The main focus of this text is to present principles of inorganic chemistry specifically molecular

and orbital structure. Unlike previous texts, this book only dedicates a small portion to

21



presenting useful mathematical concepts such as group theory. In fact there is only one chapter,
the fourth chapter that deals with the relevance of group theory to chemical and molecular
symmetry. This chapter is titled , Y # and looks at the following group
theory topics: groups, representation of groups, character tables, and direct product. The chapter
opens by stating:

So far our discussion has been non-mathematical. Ignoring mathematics, however, does

not make things necessarily easier. Group theory is the mathematical apparatus for

describing symmetry operations. It facilitates the understanding and use of symmetries.

It may not even be possible to successfully attack some complex problems without the

use of group theory. (Hagittai, 1986)

Despite the fact that this text dedicates little attention to the chemical applications of
group theory, this chapter still presents all the basic elements of group theory along with some

basic examples relating to molecular structure. Without a doubt a course that centers on this text

alone could not feature a thorough presentation of the chemical applications of group theory.

4.14 Group Theory and Symmetry in Chemistry (Hall, 1969)
/| & , , ,Eastern Nazarene College, Quincy, MA
" # presents the powerful relation between group

theory and chemistry. The author doesn’t spend a great deal of time laying down the
fundamentals of group theory yet instead discusses its relevance and importance to chemistry.
When needed, he introduces specific definitions and important concepts of group theory. The
author states the following provision about the organization of his book:
Because of the systematic nature of group theory we shall use this abstract theory as the
basis for organizing our notions concerning symmetry, as a means not only of developing

useful equations but also classifying shapes, functions, and molecular structure. (Hall,
1969)
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The presentation and organization of this book is near perfect. While other similar texts
introduce group theory and its applications at random points throughout, this text never loses its
focus and constantly presents specific mathematical concepts with their respective chemical
applications. Although he never gives his own opinion on the demographic he is looking to
educate, (undergraduate, graduate, researcher, etc.) Hall only makes chemistry-related
assumptions. An advanced math background does not seem expected with this text however, it
is very clear that a strong chemistry background along with basic college level mathematics is

assumed.

4.1.5 Group Theory in Chemistry and Spectroscopy (Tsukerblat, 1994)
0 #" , Academy of Sciences of Moldova, Moldova

N 4 is a chemistry text book that looks
specifically at the chemical applications of group theory however it does not spend any time
establishing basic definitions of group theory as the other texts have. According to the author:

The physical and chemical applications of group theory are usually based on the geometric
symmetries of atoms, molecules and crystals, as well as on the symmetries for the equations
describing the properties and behavior of the physical system under consideration. For a
contemporary chemist, group theory is not only a key element of the quantum mechanical
methods of investigating the electronic structure of matter...The present work is intended as a
handbook on group theory for chemists... (Tsukerblat, 1994)

Despite not having a great deal of fundamental concepts of group theory, this book is
presented in an advanced mathematical language while still being an advanced chemistry text.
The author interweaves advanced mathematical concepts with chemical applications throughout

while still maintaining pertinent visual examples to help convey those concepts.
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4.1.6 Molecular Symmetry and Spectroscopy (Bunker, 1979)
$ 0" , Herzberg Institute of Astrophysics, Ottawa, Canada

is a very theoretical text that delves more into the
mathematics involved in molecular symmetry. According to the author:

This is a book about the use of group theory in quantum mechanics with particular reference to
problems in molecular spectroscopy...The book is aimed at the serious student of molecular
spectroscopy, and although knowledge of the postulatory basis of quantum mechanics is assumed,
group theory is developed from first principles. The idea of the molecular symmetry group is
introduced early in the book (in Chapter 2) after the definition of the concept of a group by using
permutations. (Bunker, 1979)

This concept of the molecular symmetry group, which the author denotes as MS, is quite
interesting because it is a very comprehensible application of a group theory concept.

Specifically, the author uses permutations to help represent symmetry operations.

4.1.7 The International Encyclopedia of Physical Chemistry and
Chemical Physics (McWeeny, 1963)

# : isa
worldwide respected series of texts in mathematics, physics, and chemistry focusing primarily on
the latter two. Collectively, the series has over 70 authors and editors all of whom are highly
educated and established members of academia spanning from all over the world including:
England, Australia, Scotland, the United States, Russia, France, Ireland, the Netherlands, Japan,
Canada, Belgium, Germany, and Brazil. According to the introduction:

The International Encyclopedia of Physical Chemistry and Chemical Physics is a

comprehensive and modern account of all aspects of the domain of science between

chemistry and physics, and is written primarily for the graduate and research worker.

The Editors-in-Chief, Professor E.A. Guggenheim, Professor J.E. Mayer and Professor

F.C. Tompkins, have grouped the subject matter in some twenty groups (General Topics),

each having its own editor. The complete work consists of about one hundred volumes...
(McWeeny, 1963)
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The third volume of the first group of general topics, ' # 1" s titled
! " # written by R. McWeeny from the University of
Keele, England. Although this series is by in large dedicated to chemistry and physics, this text
primarily presents important concepts in advanced mathematics. This is only appropriate since
mathematics is inextricably linked to both fields. In the preface the author is very profound in
stressing the importance of group theory to physical chemistry:

The value of group theoretical methods is now generally accepted. In chemical physics alone, the
symmetries of atoms, molecules, and crystals are sufficient to determine the basic selection and
intensity rules of atomic spectra, and of the electronic, infra-red and Raman spectra of molecules
and crystals...The present book is intended primarily for physics and chemistry graduates who
possess a fair amount of mathematical skill but lack the formal equipment demanded by the
standard texts. Accordingly, the elementary ideas of both group theory and representation theory
are developed in a leisurely but reasonably thorough way, to a point at which the reader should be
able to proceed easily to more elaborate applications...Much of the material in this book has been
presented to final year undergraduates and to graduate students in the Departments of
Mathematics, Physics, and Chemistry at the University of Keele... (McWeeny, 1963)

At first glance, the title would suggest that this is a chemistry text however it is classified
in the WPI library as a mathematics text and it’s not difficult to see why. Although the author
has several applications to physical chemistry, a large portion of the text is dedicated to
presenting all the basic concepts of group and representation theory such as:

Symbols and the group property
Definition of a group

Powers, products, generators
Subgroups, cosets, classes

Invariant groups and the factor group
Homomorphisms and Isomorphisms
The direct product

The algebra of a group

The author presents a few chapters on specific applications as well. The theorems and
mathematics are presented in a very basic yet detailed way that would assume a college

education however not necessarily an immense knowledge of abstract algebra and group theory.
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Regardless, this text is still extremely advanced in both mathematics and chemistry and it is clear
that the author is an expert in both. The author is well versed of the depth of the topic and

stresses the importance group theory has to quantum chemistry.

4.2 Chemistry in Group Theory Texts

Research into how chemistry is applied to group theory throughout academia did not
yield an equal wealth of information as in the previous section. However, despite the lack of

group theory classes addressing applications to chemistry there were still a great deal of related

published texts.
4.2.1 Group Theory and Its Physical Applications (Falicov, 1966)
[+ (, University of Chicago, Chicago, Illinois
" # is a text comprised of lecture notes from a

graduate course from the Physics Department of the University of Chicago during the summer
term of 1964. According to the author:

They [lecture notes] do not comprise a complete book or a significantly new research contribution
to the field; they simply contain a selection of topics in the theory of groups and its application to
physical problems... (Falicov, 1966)

This text is unique because it is a composition of physics notes with its primary topics
being mathematics and chemistry also. This is due to the fact that book presents “topics that
strongly reflect the point of view and personal taste of the author.” (Falicov, 1966)

With regards to the chemical applications of group theory, the author has one chapter
titled ' " . This chapter begins by reintroducing the
properties of groups that are relevant to this field of study. These include: the group of all

rotations about a given axis, the group of translations, the point groups of the crystal, proper
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rotations, reflections, and inversions. The chapter is equally comprised of both mathematical and

chemical concepts and never lost focus of the links between the two.

4.2.2 Applications of Finite Groups (Lomont, 1959)
2 |/ , New York University, New York
+ I " 1isatextbook that was used at New York University to

present specific applications of group theory to chemistry. Although the text does take a few
pages to introduce the fundamental concepts of group theory, the vast majority is dedicated to its
applications. According to the author:

The objectives of this book are: (1) to provide a mathematical background (primarily
representation theory) in finite groups which is adequate for both reading this book and for
reading the physics literature, and (2) to provide a variety of instructive and interesting examples
of applications of finite groups to problems in physics. It is assumed that the reader has been
exposed to matrix theory and general group theory. Also, a knowledge of quantum mechanics is
presupposed. (Lomont, 1959)

There are two chapters dedicated to applications of group theory including: molecular
vibrations, crystallographic point groups, proportionality tensors in crystals, lattice harmonics,
and molecular orbitals. The mathematics presented is extremely advanced and more related to
physics than chemistry however the text does offer chemical examples relating to molecular
symmetry in the section on molecular orbital (MO) theory. The chemistry presented in this
section is extremely introductory and does not have any assumptions about the chemical
background of the reader. However, the chapters on applications are much more physics related
specifically pertaining to tensors. Overall, this is a valuable text for advanced students looking

to learn more about applications of group theory.
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4.2.3 Group Theory and Its Applications (L.C. Biedenharn, 1971)
3" . r

" # is a series of three volumes written by numerous
contributors ranging from the United States, Canada, Sweden, Switzerland, and Mexico. Both
the first two volumes have sections dedicated to the chemical applications of group theory. In
the first volume there is chapter titled ! " # which is written by
B.R. Judd from Johns Hopkins University in Baltimore, Maryland. This chapter deals will many
different chemical applications and according to the author:

Group Theory plays two roles in atomic spectroscopy. Its most obvious function is to take
advantage of the symmetry possessed by the Hamiltonian for the electrons of an atom...The
rotation group in three dimensions, O'(3), enters in a direct and physically significant way. It
underlies the theory of angular momentum (1), and is central to those applications of group theory
to atomic spectroscopy... (L.C. Biedenharn, 1971)

The only major difference between this chapter and others from group theory texts is that
this author looks at the symmetries on the atomic level as opposed to the molecular level.
Overall the chapter is very abstractly written, as most group theory material is, and does not have
any examples or applications. Rather, the author mentions which areas these concepts can be
applied to chemistry.

In the second volume, chemical applications are very briefly touched upon in the chapter

by Harold V. Mclntosh from Instituto Politécnico Nacional, Mexico.
Specifically the author addresses the symmetries of the hydrogen atom from a mathematical
perspective. Virtually no chemistry is presented. Overall, this series is a tremendous resource
for students studying advanced math, specifically abstract algebra and group theory, however the

text does a very poor job in presenting examples to help demonstrate these applications.
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Chapter 5: Chemistry in Mathematics

Burnside Rings: Application to Molecules of Icosahedral Symmetry (Torres,
2004) . ' 4 5# , University of Castilla-La Mancha, Spain

In this paper the author begins by stating:

This paper describes basic facts about this algebraic structure and develops some applications in
chemistry, as the labeling of atoms in molecules of high symmetry and the construction of
symmetry-adapted functions. For illustrating such applications, the concept of Burnside ring is
applied to the icosahedral symmetry. (Torres, 2004)

William Burnside is credited as one of the first contributors to the theory of finite
groups. One of his principal contributions to the field is known as Burnside’s lemma, also
referred to as the Orbit-Counting Theorem. To understand Burnside’s lemma, it is important to
definea " 6

If! isa group and 7 is a set, then a " of ! on 7 is a binary function
' x7 — 7 denoted ( 8)|—> 89which satisfies the following two axioms:

I. ( )8= +«( -8 forall , in! and8in7
2. -8=8forevery 8in 7 (where denotes the identity element of G)

Likewise we also have to define an 6
Consider a group ! acting on a set 7. The of a point 81in 7 is the set of elements of
7 to which 8 can be moved by the elements of ! . The orbit of 8is denoted by ! 8:
Ge={g-z|g€ G}.
Lastly we must definea 8

Given a group ! and aset 7 a fixed point is an element 8¢ 7 such that forany e€! 6

G,={9g€G|g-z=ux}.
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Burnside’s lemma states that for a finite group ! that on the set 7:
Foreach in! let 7 € represent the set of fixed points in 7. The number of orbits,
denoted |7:! |, is:

1

X/G| =
X/61 =

> X7

geiG (Burnside's Lemma)

Thus, the number of orbits is equal to the average number of points fixed by ! .

A simple counting problem is looking at how many distinct ways a necklace can be
assembled using two red beads and two blue beads. More specifically, how many ways can the
necklace be arranged so that no two arrangements are a rotation of one another. For this example
we have three critical assumptions: we assume that there is no clasp to this necklace, allowing us
to perform rotations, and we assume that two beads of the same color are indistinct and that the
beads are symmetric spheres, so we can include reflections. Given these assumptions, there are

six possible bead arrangements:

(1 2 ©) “4) ©) (6)

We denote the set 7 as the set of these six arrangements. The group we are concerned with for
this particular problem is the symmetry group of the square, the dihedral group denoted

has eight elements, and is thus of order 8, that alter the position of the beads. Since the total
number of orbits has to be a nonnegative integer, it is essential that the total number of fixed
elements is a multiple of the order of .. As such, our answer has to be a multiple of 8. Now

we look at how the elements of . acton 7:
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1. % 6Fixes all six arrangements therefore the operation has 6 fixed points.

2. <=> " & 6Changes all six thus the operation has 0 fixed points.

3. ?@&> " & 6(3) and (4) remain unchanged so the operation has 2
fixed points.

4. AB=> " & 6Changes all six therefore there are 0 fixed points.

5. % ! ( 8 6(1) and (2) remain unchanged so the operation
has 2 fixed points.

6. <% $ 6(3) and (4) remain unchanged so the operation has 2 fixed
points.

7. ?2@>% $ 6(5) and (6) remain unchanged so the operation has 2 fixed
points.

8. AB=>% $ 6(3) and (4) remain unchanged so the operation has 2 fixed
points.

Now applying Burnside’s lemma to calculate the total number of orbits, which in this
problem are the number of distinct ways the necklace that can be assembled, we see:

# of distinct necklaces = 1/8*(6+0+2+0+2+2+2+2) = 16/8 =2

Therefore using four beads and two colors, we can only make two distinct necklaces. This is

fairly easy to see since intuitively we can only differentiate them by alternating colors or

.e - 8e

A more complex example is looking at the rotationally distinct colorings, using five

grouping colors:

colors, of the faces of the solid cube. Since we have five choices of color for each of the six
faces of the cube, we have 5° (15,625) possible colored cubes. We denote this set of fixed color
cubes 7. Therefore, we also define ! as the rotation group for the cube. Along with the identity
operation, we have three pairs of faces that rotate three ways, six pairs of edges that rotate one
way, and four pairs of corners that rotate two ways; we have 3*3 + 6*2 + 4*2 + 1 = 24 rotations.

More specifically, ! has one identity operation, six 90° face rotations about the axis through the
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center of the face and the center of the opposite face, three 180° face rotations about the axis

through the center of the face and the center of the opposite face, eight 120° corner rotations

about an axis through opposite vertices (a main diagonal), and six 180° rotations about the axis

through the midpoint of opposite parallel edges that are not on the same face These elements

perform the following actions on 7

1.
2.

% 6fixing all 15,625 elements of 7.

8<=> 6This operation fixes two opposite faces of the cube. Therefore all
other four faces will have to be one color. The two fixed faces are free. Therefore, the
cube will have at most 3 different colors. Therefore 5° (125) elements of 7 are fixed
# 2> 6This operation also fixes two opposite faces of the cube. For
the other four faces, we will have two pairs each with their own color. Therefore, we
now will have at most 4 colors and 5* (625) elements of 7 are fixed.

2> 6This operation rotates around a main diagonal. Since

each vertex touches three faces then there can only be one color for each group of three
faces. Since there are two such groups, the cube can have at most 2 colors and thus 5°
(25) elements of 7 are fixed.

872@> 6This operation rotates the cube edgewise. As such each
pair of opposite faces must be the same color. Since there are three pairs of opposite
faces, there are at most three colors and 5° (125) elements of 7 are fixed.

Using Burnside’s lemma to compute the number of orbits of the action of ! on 7:

7/1 G= (1/24)* (15,625 + 6*125 + 3%625 + 8*25 + 6*125) = 19,200/24 = 800

Therefore, there are 800 rotationally distinct colorings of the faces of a cube using six colors and

in general using colors:

7/1 C=(1/24)*%( *+6 *+3 *+8 +6 %)
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Computing the number of distinct face colorings for different values of :

Colors (k) Distinct Face Colorings (| X/G|)
2 10
6 2,226
10 43,450
50 651,886,250
100 41,679,670,000
50000 1
45000 -
40000 -
35000 -
o 30000 -
D1st1nct' Face 25000 A
Colorings
20000 -
15000 -
10000 -
5000 -
O T T T T
0 2 4 6 8 10
Colors

This shows that as the number of colors increases, the number of distinct face colorings increases
at an exponential rate. Although the first example was easy to visualize and did not require
Burnside’s lemma to solve, the second example showed how the same principle could be applied

to a much more difficult problem that is certainly not as easy to visualize.
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More recently, Burnside’s ideas have been applied to algebraic ring structure. A ring,
denoted ($, +, x) is a set with two binary operations, addition (+) and multiplication (x),
satisfying the following axioms:

($, +) is an abelian group. This means that + is commutative so that for all €
$, + = +
X is associative: for all €e$( x )x = x( x)

The distributive laws hold in $: for all )
(+)x =( xco)+( x )and x( + )=( x )*+( x )

Mathematically, the author defines the Burnside ring:

Let! be a finite group. The set issaidtobea! -setiftoeach e€! andeach 8e there
corresponds an element 8e , such that 18= 8 (where 1 is the identity element of ! )and 8
= 8forall e! Two! -sets and # are isomorphic with respect to the group action
(denoted by ‘ = #) if there exists a bijection E6 — # suchthat E8 =E 8 forall 8¢ and
e! . Foreach element 8in ,itsorbit! 8={ 8& e€! } is the smaller! -set containing 8 Two
elements 8and of belong to the same orbit if there exists an element of! suchthat = 8
Every ! -set can be partitioned into a disjoint union of orbits. A ! -set consisting of a single
orbit is called transitive.

The stabiliser | 8of an element 8of is the subset of ! which fix 8 i.e.,! 8={ el : 8
=8}. For any 8 e , the stabiliser ! 8is a subgroup of ! . If 8and are two elements of
belonging to the same orbit, the stabilisers ! 8and! are conjugated subgroups,! = 18 —1,
where = 8 The stabilisers of the elements of an orbit form a complete conjugacy class of
subgroups of | . For any subgroup, of! , the set of left cosets of , in! , givenby! :, ={ , :

e! },is atransitive ! -set under the ! -action givenby , =, . In this case, the
stabiliser of , is , —1. For any element 8ofa! -set the orbit of 81is isomorphicto! :! 8.
Let, and D be subgroups of ! , the sets! :, and! :D are isomorphic ! -sets if and only if, and

D are conjugated subgroups. Let Q={! | = {1} ! ,!; I =1} be a full set of
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nonconjugated subgroups of | . The set of transitive | -sets {! ! : =1 2 } is a complete

set of orbits. This means that every ! -set is isomorphic to a disjoint union of such orbits:
=Ujai(G/G; (1)

where | ranges over all elements of Q and  is the number of times that the orbit ! :! appears

in the decomposition of . The coefficients are uniquely determined and can be obtained as

solutions of the system of linear equations:
l$=1 MUa] = bj, =12 (2)

Here' ris the number of elements in! ! which are fixed points of the subgroup ! 5 and Fis
the number of elements in  which are fixed points of ! 5 where both ! and! grun through the
set Q. The square matrix of dimension formed by the numbers ' ¢ is called the table of marks
of the ! group. This matrix is nonsingular; hence we can to obtain its inverse ' ! which is
known as the Burnside matrix. From equation (2) we obtain:

= ;zl(M_l)ijbj, ?AGH (3)
where ' ! ris the F entry of”’ -

Let and#betwo! -sets. The Cartesian product of and #, denoted by x #, is the set
of all ordered pairs 8 where 8¢ and e#;ie, x#={8 :8e¢ € # }. The action of
I on x#isgivenby 8 = 8 ,forany €! andany 8 € x#.Since 8 €
and e# x#isa! -set. The Cartesian product of the ! -sets! :I and! :! risa! -set, then

it is isomorphic to a disjoint union of orbits:
(G/Gi) % (G/G;) =Ujnijr(G/Gy) (4)

where ! ranges over all elements of Q. If! is a subgroup of ! the number of fixed points of
I in!:! and! :! pare’ and' g respectively. Then the number of fixed points of I in ! :!

x i1 gis' ' g Byapplying equation (3), we obtain:
35



F =X (M™D) MyMyj. (5)
The Burnside ring O ! of the group ! is defined by:
0! ={/-1a;,(G/G)):a;eZ}, (6)
where Z is the set of integer numbers. The Burnside ring is a commutative ring with identity
I':l,wherethesum ! :I  + !l g isthe disjoint union of ! :! and! :! g and the product

I':l - 1l g is the Cartesian product of ! ;! and! :! gi.e.,

(G/G) + (G/G) = (G/G) U (G/G)),

(G/G)+ (G/G) = (G/G)x (G/G}). (T) (Torres, 2004)

As an example we generate the Burnside ring corresponding t the symmetric group Ss.

2

We denote S; by ! . ! has six elements, { % ). The next step is to determine the

subgroups of ! :
e { }=! (the trivial subgroup)

o { 1,1 1, { %} =1 ,(these subgroups are each isomorphic to the cyclic
group | , since a reflection followed by a relfection is the identity operation)

o 21=1 5 (this subgroup is isomorphic to the cyclic group | 5 since three
rotations is the identity operation)
o | 2 2y=1. | (every group is also a subgroup of itself)

From this we can contruct the subgroup lattice of ! :

G

36



For this example, we are concerned with the set {1 11 , 1 :1 o 1 il g1l .} where! @, =
{1 et}
LoGG={{}L{L{{h L)}
2. G/Gr={ L b={{L 0, LA
3. G/Gs=1, 0 y={{ A OF

4 GGy 1 L2 21}

Now we are concerned with how each of the subgroups of ! act on each of these sets.
Now we introduce which help to simplify the Burnside ring. A mark is defined as the
following:

Given a group ! that acts on a set 7, and a group , that is a subgroup of ! , then the mark
of , on 7 is the number of elements of 7 that are fixed by every element of 7:

mx(H) = |[X¥|\yhere X ={z € X | h-z=1z,Yh € H}. (Burnside Ring)
Therefore the mark of a product! J(! :! g is equal to the total number of fixed points.
Collectively, all possible marks form a table known as 0" K# ' whichisan x
nonsingular (and therefore invertible) matrix. (Burnside, 1897). Specifically, how many fixed

points there are for each group action:

LoG/GE (4L (L L0 H7 )

Lol *{{ L L2 L L L =00 n L),
{ 1L{ 2 } }; therefore we have 6 fixed points.

AC D FLUL LR 0L L =00 U )

{ 3}, { %1} therefore we have 0 fixed points.

e (I T O O O e T T O e N S 7 0 A
{2}, {}}; therefore we have 0 fixed points.

(! .*(! 1 9): Every element of ! :! » changes therefore there are 0 fixed

points.

Therefore the first row of our table of marks is: [6,0,0,0]
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2. GG {{,}{, L{%7})
I %1 i1 a): trivially we have 3 fixed points.
U S N N O e SR N T S U B ¢
therefore we have 1 fixed point.
Pt 2, 4, LA =00 L{A2h{.
therefore we have 0 fixed points.
(! .*(! 1 p: Every element of ! :! achanges therefore there are 0 fixed

points.

Therefore the second row of our table of marks is: [3,1,0,0]
3. GG {{ i Tsh)
I %1 i1 9 trivially we have 2 fixed points.
U T e N e £ s P S I ¢
therefore we have 0 fixed points.
Pe* (Mt o *{H 4 Pyr={0 AL %Lk
therefore we have 2 fixed points.
(!.*(:1 9: Everyelement of ! :! gchanges therefore there are 0 fixed

points.

Therefore the third row of our table of marks is: [2,0,2,0]

4. G/Gg!; ! therefore! . L {{ 7 2y
I %1 1) trivially we have 1 fixed point.
Lax(cl ) *{ { : 21y={{ : 1} therefore we
have 1 fixed point.
c I I Pyr=4 7 ? 1} therefore

we have 1 fixed point.

(!.*(:1.): Again we have 1 fixed point.

Therefore the fourth row of our table of marks is [1,1,1,1]
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We can now produce our table of marks whose values comprise a 4x4 matrix ' :

G |GG, /G, G/G; G/Gy

G, 6 3 2 1
G, 0 1 0 1
G, 0 0 2 1

G, 0 0 0 1

Appropriately, this matrix has nonzero entries across the main diagonal; hence we can obtain its

. Coel,
inverse' 66 12  -1/6 1/)

This matrix is known as the Burnside matrix. The Burnside ring is defined as the disjoint union
of all left cosets ! :! each with their own coefficient . This coefficient will depend on the
particular set we are dealing with.

If we consider an equilateral triangle with each vertex labeled a different letter:
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We then denote set 7 as the set of all the possible triangles we see that for the first vertex we
have three choices of letter, the second vertex has two choices, and the third has only one.
Therefore, we have 3*2*1= 6 possible triangles. These triangles are all generated by a different
element of ! acting on the same element of 7.

From the Burnside matrix we can compute the coefficients for each coset ! :! .

— ;zl(M_l)ij b;, 1,23, H, & ris the number of elements in 7 which are
fixed points of ! p
We now compute 5 for F=1,2,3,4:

(the identity fixes all the triangles)

6
0
0
0

e o o o
AW oD~

We now compute the coefficients by multiplying the Burnside matrix ' ' by the vector

' o™y -~ =
/6 -1/2 -1/6 1/2 6 1
o= 0 1 0 -1 0| _ 0
0 0 /2 -1/2 0 0

\--,_G 0 0 1 A0 0

Therefore, for the set 7 its element of the Burnside ring is the vector [1,0,0,0]T and more
specifcally, this set is congruent t0:2?=1[1,0,0,0] «(G/G) =V ={{L{nL{ (),
{ },{?} ) which we showed was true since each element of | generates one of the six

possible triangles.

Letting our group ! act on a different set, we now look at a regular triangular prism:
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For this example, our set denoted L is composed of all the elements of the prism:
e 06 vertices (V)
e 5 faces (F)
o 2 triangular
o 3 rectangular
e Oedges (E)
e | interior volume (I)

Therefore L has 21 elements. Now we let the subgroups of ! act on L and count the number of
fixed points to get our values ©

e | ;: The identity fixes all 21 elements of L: | 21
o | 17, fixes 3 elements of L ( , 3) namely:
o Both triangular faces
o The interior volume
o | 3:7;5fixes 3 elements of L ( 3 3) namely:
o Both triangular faces
o The interior volume
o !, fixes1elementofL ( 4 1)namely:
o The interior volume

So our pvector is [21,3,3,1]". Now we multiply this vector by our Burnside matrix ' ™' to get

our coefficient vector
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I\--,_l[}l 0 0 ]'_,-/I‘*-]-_.J 1)

Therefore, for the set L its element of the Burnside ring is the vector [2,2,1,1]T and more
specifcally, L is congruent to Z?=1[2,2,1,1] * (G /G;) meaning we can express the set L as

being congruent to the following sum: 2(! ! ) +2(1 L )+ (1 L)+ (1 y).

The generators of the Burnside ring are simply the columns of the table of marks. This ring is
commutative with identity element ! :! 4 where addition is given by disjoint union and
multiplication is given by the Cartesian product:

)+ =)V (G/G) F
¢rHy*dg=0CtH)x(ttp
To give an example of what is meant by Cartesian product in this example, we simply look at the
rows of our table of marks. We can multiply (! :! )x (! :! p simply by multiplying the columns

component-wise. For example:

¢ y)x () [3,1,0,0]" *[2,0,2,0]" = [3*2,1*0, 0%2, 0%0] =[6,0,0,0]" =1 :! ,
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We now construct the multiplication table of our Burnside ring O(! ):

G G/G, G/G, G/G; G/Gy

GG, 6" ) 311 20y o,

G/Gy, | 3(0 ) TMEE, b T,
G/Gs | 2(1 1) L 20015 iy
G/Gy| ' I Y [ O B

Using this multiplication table we can compute the product of our two sets 7 and L.
From a physical standpoint this product isn’t practical however the product can still be
calculated. Recalling that 7 is congruent to ! :! jand L is congruent to 2(! :! ;) +2(! ! ,) +
(! 1 3)+ (1 y) the product 7 x L is:
TxL=0T)x@dtp+200 )+ d )+ Y)
=2(6(! ! D))+23C ) +20 Y+
=120 )+t )20 )+

=21(1 1 )
Since 7 has 6 elements and L has 21 elements, it follows that the product 7 x L has 6 x 21 (126)

elements. Since we defined! :! | to have six elements, 21(! :! ;) will have a total of 126
elements and therefore our product is correct.

Choosing !  S; was a relatively simple example since S; has order six. However, no
matter what the size of the group or the set on which the groups acts the procedure is still the
same. For these examples, we chose S; acting on the set of triangles but we could have chosen
S; on a much larger set. This demonstrates how the Burnside ring allows you to simplfy and
decompose complex geometric structures.

In the paper, the author looks at the icosahedral rotation group . The icosahedral rotation

group is a subgroup of the icosahedral group  which is the group of symmetries of the
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icosahedron and is of order 120. is of order 60 and isomorphic to the alternating group As of
even permutations of five objects. acts on the icosahedron which is defined as any polyhedron
having 20 faces. A regular icosahedron is a platonic solid with faces that are equilateral
triangles. A platonic solid is a convex regular polyhedron. A regular icosahedron has 30 edges
and 12 vertices with five triangles meeting at each vertex. has a total of five symmetry
operations that collectively form the group:

¢ | identity operation ( )

e 12 proper rotations about the Cs axis ( n)

e 12 sets of two proper rotations about the Cs axis ( N
e 20 proper rotations about the C; axis ( @

e 15 proper rotations about the C, axis ( a)

Although this group is much more complex than the one we chose, the procedure for
generating the ring is exactly the same. The only differences being the number of orbits ( has
nine distinct orbits), and their cardinalities. The orbits of are the following:

() A single point in the origin of coordinates
#) The set of three orthogonal pairs of antipodal edge midpoints of the icosahedron
5s) The set of pairs of antipodal vertices of the icosahedron
3) The set of pairs of antipodal face midpoints of the icosahedron
») The set of pairs of antipodal edge midpoints of the icosahedron
5) The set of vertices of the icosahedron
3) The set of face midpoints of the icosahedron
») The set of edge midpoints of the icosahedron
1) The set of vertices of a truncated icosahedron (Torres, 2004)

NN AN AN AN AN AN

generates different platonic including the dodecahedron (12 faces), icosahedron (20
faces), icosidodecahedron (32 faces), small rhombicosidodecahedron (62 faces), and the snub
dodecahedron (92 faces). Archimedean solids are defined as highly symmetric polyhedrons that
are composed of two or more types of regular polygons meeting at identical vertices.
Specifically, generates two different Archimedean solids: the truncated dodecahedron (32
faces), and the truncated icosahedron (32 faces). The truncated icosahedron, the shape used in

the design of soccer balls, has identical structure to the molecule C¢y Buckminsterfullerene,
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commonly known as a Both the truncated icosahedron and Buckminsterfullerene
molecule have 20 regular hexagonal faces as well as 12 regular pentagonal faces. Likewise, both
have 60 vertices and 90 edges where for Cg, each vertex represents an atom and each edge
represents a bond.

This knowledge and application of symmetry to molecular structure is critical to
chemistry. In the case of Cgy, it is extremely useful considering the molecule itself was

discovered only 23 years ago in 1985:

Chemists discovered a 60-atom carbon molecule, dubbed buckminsterfullerene, which seems to
have a structure with the same geometry as the pattern on a soccer ball. (Science News of the
Year, 1985)

As such, there is still much to be learned about the molecule and the fullerene family as a whole.
These molecules have a very short half-life and as such are difficult to discover in nature. In
fact, the existence of Cgp was predicted in 1970 by Eiji Osawa of Toyohashi University of
Technology, an engineering university in Toyohashi, Aichi, Japan. He was able to make this
prediction by looking at the molecule C,0H,o corannulene. He discovered that corannulene had
to be a substructure of larger molecule. Without this observation, it is very possible that

buckminsterfullerene might still be undiscovered.

45



Chapter 6: Mathematics in Chemistry

Group Theory and the Near-Ultraviolet Absorption Spectrum of Gas-Phase
Benzene (Bryce E. Williamson, 2002) 0
@) D | # , University of Canterbury, Christchurch, New Zealand

ACELL, Australasian Chemistry Enhanced Laboratory Learning, was founded in the late
1990’s and initially funded by the Australian government. According to the ACELL website
they have three principal aims:

o To make available, via a database, materials relating to undergraduate chemistry
experiments which are educationally sound and have been evaluated by both students and
academic staff. These materials consist of everything needed to introduce the experiment
into another institution, as well as evaluation data relating to both the chemical and the
educational aspects of the experiment;

e To provide for the professional development of chemistry academic staff by expanding
the understanding of issues surrounding student learning; and,

o To facilitate the development of a community of practice in chemistry education within
the broader academic community of the Australasian region. (ACELL, 2002)

The predecessor to ACELL was APCELL, Australian Physical Chemistry Enhanced
Laboratory Learning. APCELL was designed to offer state of the art chemistry laboratories and
equipment to thousands of Australian chemistry students. The resources that APCELL provides
chemistry students includes a variety of laboratory procedures designed to illustrate the concepts
presented in chemistry lectures at the university level.

One of these procedures is titled ! " # 3 P (

! 0 5 (Bryce E. Williamson, 2002). This project is designed to
introduce students to how elements of group theory can be applied to further understanding
molecular structure and interpreting UV spectral data. The laboratory description of this project

reads the following:

Modern physical models, such as quantum mechanics, provide powerful means by which to
describe and rationalise molecular properties. However, as the size (the number of electrons and
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nuclei) of the molecule increases, brute-force treatments employing such models can rapidly
expand to ungainly proportions, which make the problem extremely difficult to conceptualise.
One way to simplify such problems is to employ the techniques of group theory. Group theory is
a branch of mathematics that has a vast number of applications in the physical sciences. In
chemistry, it permits aspects of molecular problems to be categorised in terms of molecular
symmetry, with a consequent reduction of the apparent complexity. This, in turn, vastly aids the
interpretation and conceptualisation of experimental and theoretical data. (Bryce E. Williamson,
2002)

The authors of this laboratory procedure state that benzene (CsHg) was chosen “for a
number of reasons.” (Bryce E. Williamson, 2002) The most important reason being that
“benzene is a prototypically simple and relatively symmetric polyatomic molecule...” (Bryce E.

Williamson, 2002) Benzene is an organic compound with the following molecular structure:

: |

N /

_\< >/_

H/ \H

Benzene Structure

Benzene is comprised of six carbon atoms and six hydrogen atoms. This cyclohexene
structure contains alternating covalent single and double bonds, as is seen in a conjugated
system. As seen in the figure above, each carbon molecule is covalently bonded to a hydrogen
atom.

Specifically, this laboratory procedure deals with ultraviolet-visible (UV/VIS)
spectroscopy and the absorption spectrum of benzene. UV/VIS spectroscopy is routinely used in

47



the quantitative determination of solutions of transition metal ions and highly conjugated organic
compounds (such as benzene). (Ultraviolet-visible spectroscopy) Photons from the visible
spectrum of light specifically near the ultraviolet range are used in UV/VIS spectroscopy. In this
range of the visible spectrum, molecules undergo electronic transitions when valence electrons
jump from one energy level to a higher energy level giving off a photon. Different molecules
absorb light at different wavelengths, depending on the molecular structure. More specifically,
the differences in wavelengths depend on the structural subgroups in the molecule. Benzene has

the following UV/VIS spectrum:

Benzene
UVVIS SPECTRUM
0.45 -
0.40 -
o i
O =
o L
8 L
€ 0.35
2] L
e
< i
0.30 -
0.25F

170. 180. 190. 200.
Wavelength (nm)
(UV/VIS Absorption Spectrum of benzene)

The rest of the lab, and the overwhelming majority of it, is dedicated to analyzing this spectrum
by applying group theory concepts in order to demonstrate the practical applications of the

theorectical concepts.
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